Сенсорные зоны коры больших полушарий. Физиология коры больших полушарий мозга Сенсорные зоны коры больших

Бродманн на внешней поверхности коры выделяет 52 поля по принципу строения клеток. В новой коре различают сенсорные, ассоциативные и двигательные зоны.

Сенсорные области коры – это зоны, в которые проецируются сенсорные раздражители (синонимы: проекционная кора, корковые отделы анализаторов). Афферентные пути в сенсорные зоны поступают преимущественно от специфических сенсорных ядер таламуса. Сенсорная кора имеет ярко выраженные 2 и 4 слои, поэтому иногда называется гранулярной.

Принято выделять в зоне того или иного анализатора проекционные, или первичные, и вторичные, поля, а также третичные поля, или ассоциативные зоны.

Первичные поля получают информацию, опосредованную через наименьшее количество переключений в подкорке (в зрительном бугре, или таламусе, промежуточного мозга). На этих полях как бы спроецирована поверхность периферических рецепторов. В свете современных данных, проекционные зоны нельзя рассматривать как устройства, воспринимающие раздражения «точку в точку». В этих зонах происходит восприятие определенных параметров объектов, т. е. создаются (интегрируются) образы, поскольку данные участки мозга отвечают на определенные изменения объектов, на их форму, ориентацию, скорость движения и т. п. Кроме того, локализация функций в первичных зонах многократно дублируется по механизму, напоминающему голографию, когда каждый самый маленький участок запоминающего устройства содержит сведения о всём объекте. Поэтому достаточно сохранности небольшого участка первичного сенсорного поля, чтобы способность к восприятию почти полностью сохранилась.

Вторичные поля получают проекции от органов чувств через дополнительные переключения в подкорке, что позволяет производить более сложный анализ того или иного образа.

Наконец, третичные поля , или ассоциативные зоны, получают информацию от неспецифических подкорковых ядер, в которых суммируется информация от нескольких органов чувств, что позволяет анализировать и интегрировать тот или иной объект в ещё более абстрагированной и обобщённой форме. Эти области называются также зонами перекрытия анализаторов.

Важнейшие первичные сенсорные области

  1. Кожная чувствительность. Корковый отдел – теменная кора постцентральной извилины (соматосенсорная область). Здесь располагается проекция кожной чувствительности противоположной стороны тела от тактильных, температурных рецепторов, интерорецепторов и рецепторов опорно-двигательного аппарата от мышц, суставов и сухожилий. Проекция головы расположена в нижних участках постцентральной извилины, проекция нижней половины туловища и ног – в верхних участках. Проекции наиболее чувствительных участков (лицо, губы, гортань, пальцы рук) имеют относительно большие зоны по сравнению с другими частями тела.
  2. Слуховая чувствительность. Ядро анализатора – в глубине латеральной борозды (височные извилины Гешля). В разных участках коры представлены разные участки кортиева органа. К проекционной зоне височной коры также относится центр вестибулярного анализатора в верхней и средней височных извилинах.
  3. Зрительная чувствительность. Первичная проекционная область расположена в затылочной коре – клиновидная извилина и язычковая долька, поле 17. Каждой точке сетчатки соответствует свой участок коры, зона желтого пятна имеет сравнительно большую зону проекции. В связи с неполным перекрестом зрительных нервов в зрительную область каждого полушария проецируются одноименные половины сетчаток. Наличие в каждом полушарии проекций от обоих глаз является основой бинокулярного зрения.
  4. Обонятельная чувствительность. Центр обоняния находится на медиальной поверхности височной доли. При одностороннем поражении отмечаются снижение обоняния и обонятельные галлюцинации.

В пределах каждой доли коры больших полушарий рядом с проекционными зонами расположены поля, которые не связаны с выполнением какой-либо специфической сенсорной или моторной функции. Такие поля составляют ассоциативную кору (третичные зоны) , для нейронов которой свойственно отвечать на раздражение различных модальностей и таким образом участвовать в интеграции сенсорной информации и в обеспечении связей между чувствительными и двигательными зонами коры. Эти механизмы являются физиологической основой высших психических функций . У человека ассоциативные зоны занимают до 70% новой коры. Основной особенностью нейронов ассоциативных зон является полимодальность.

В состав ассоциативный коры входит ряд областей теменной, височной и лобной долей.

Теменные ассоциативные поля получают основную афферентацию от задней группы ассоциативных ядер таламуса (подушка и латеральное заднее ядро). Эфференты на ядра таламуса и гипоталамуса, моторную кору. Основные функции: 1. гнозис – узнавание формы, величины, значения, закономерностей. Оценка пространственных отношений. 2. формирование схемы тела. 3. праксис – организация целенаправленных действий, хранение программы сложных двигательных актов.

Лобные доли (поля 9-14) имею ассоциативный вход от ассоциативных ядер таламуса. Лобные доли имеют обширные двусторонние связи с лимбической системой мозга, контролируют оценку мотивации поведения и программирование сложных поведенческих актов . Установлено участие лобных долей в управлении движениями . Лобные доли обеспечивают способность вероятностного прогнозирования ситуации и изменение программы действий в зависимости от меняющихся условий среды. Также организуют самоконтроль действий. В области задней трети нижней лобной извилины расположен ассоциативный центр артикуляции речи, центр Брока. Развивается у правшей и у левшей ассиметрично. При поражении возникает моторная афазия – утрата способности говорить.

Височная ассоциативная кора . Здесь расположен центр Вернике, ответственный за речевой гнозис – распознавание устной речи.

19. Функции новой коры, функциональное значение первой и второй соматосенсорных зон, моторные зоны коры (их локализация и функциональное значение). Полифункциональность корковых областей, функциональная пластичность коры.

Соматосенсорная кора - область коры головного мозга, которая отвечает за регуляцию определенных сенсорных систем. Первая соматосенсорная зона расположена на постцентральной извилине непосредственно позади глубокой . Вторая соматосенсор­ная зона находится на верхней стенке боковой борозды, разделяющей теменную и височную доли. В этих зонах обнаружены терморецептивные и ноцицептивные (болевые) нейроны. Первая зона (I) достаточно хорошо изучена. Здесь имеют представительст­во практически все участки поверхности тела. В результате систематических исследований получена достаточно точная картина представительств тела в этой зоне коры головного мозга. В литературных и научных источниках такое представительство получило наименование “соматосенсорного гомункулуса” (подробно см. юнита 3). Соматосенсорная кора этих зон, с учетом шестислойного строения, организована в виде функциональных единиц - колонок нейронов (диаметр 0,2 - 0,5 мм), которые наделены двумя специфическими свойствами: ограниченным горизонтальным распространением афферентных нейронов и вертикальной ориентацией дендритов пирамидных клеток. Нейроны одной колонки возбуждаются рецепторами только одного типа, т.е. специфическими рецепторными окончаниями. Обработка информации в колонках и между ними осуществляется иерархично. Эфферентные связи первой зоны передают переработанную информацию к двигательной коре (обеспечивается регуляция движений по обратной связи), теменно-ассоциативной зоне (обеспечивается интеграция зрительной и тактильной информации) и к таламусу, ядрам заднего столба, спинному мозгу (обеспечивается эфферентная регуляция потока афферентной информации). Первая зона функционально обеспечивает точное тактильное различение и сознательное восприятие стимулов на поверхности тела. Вторая зона (II) изучена меньше и она занимает значительно меньше места. Филогенетически вторая зона старше первой и участвует практически во всех соматосенсорных процессах. Рецептивные поля нейронных колонок второй зоны находятся на обеих сторонах тела, а их проекции симметричны. Данная зона координирует действия сенсорной и двигательной информации, например, при ощупывании предметов двумя руками.

Моторные (двигательные) зоны коры

Передняя центральная извилина (кпереди от роландовой борозды) и прилегающие к ней задние отделы первой и второй лобных извилин составляют двигательную зону мозговой коры. Ядром двигательного анализатора является передняя центральная извилина (поле 4). Характерной цитоархитектонической особенностью поля 4 служит отсутствие IV слоя зернистых клеток к наличие в слое V гигантских пирамидных клеток Беца, длинные отростки которых в составе пирамидного пути достигают промежуточных и двигательных нейронов спинного мозга.

В области передней центральной извилины расположены центры движения для противоположных конечностей и противоположной половины лица, туловища (рис.).

    Верхнюю треть извилины занимают центры движения нижних конечностей , причем выше всех лежит центр движения стопы, ниже него - центр движения голени, а еще ниже - центр движения бедра.

    Среднюю треть занимают центры движения туловища и верхней конечности. Выше других лежит центр движений лопатки, затем - плеча, предплечья, а еще ниже - кисти.

    Нижняя треть передней центральной извилины (область покрышки - operculum) занята центрами движения для лица, жевательных мышц, языка, мягкого нёба и гортани.

Так как нисходящие двигательные пути перекрещиваются, то раздражение всех указанных точек вызывает сокращение мышц противоположной стороны тела. В моторной зоне наибольшую площадь занимает представительство мускулатуры кистей рук, лица, губ, языка и наименьшую - туловища и нижних конечностей. Размерам коркового моторного представительства соответствует точность и тонкость управления движениями данной части тела.

Электрическое или химическое раздражение участков поля 4 вызывает координированное сокращение строго определенных мышечных групп. Экстирпация какого-нибудь центра сопровождается параличом соответствующего отрезка мускулатуры. Паралич этот через некоторое время сменяется слабостью и ограничением движения (парез), так как многие двигательные акты могут выполняться за счет непирамидных путей или благодаря компенсаторной деятельности уцелевших корковых механизмов.

Премоторная зона коры

Двигательные зоны коры. Выделяют первичную и вторичную моторные зоны.

В первичной моторной зоне (прецентральная извилина, поле 4) расположены нейроны, иннервирующие мотонейроны мышц лица, туловища и конечностей. В ней имеется четкая топографическая проекция мышц тела (см. рис. 2). Основной закономерностью топографического представительства является то, что регуляция деятельности мышц, обеспечивающих наиболее точные и разнообразные движения (речь, письмо, мимика), требует участия больших по площади участков двигательной коры. Раздражение первичной моторной коры вызывает сокращение мышц противоположной стороны тела (для мышц головы сокращение может быть билатеральное). При поражении этой корковой зоны утрачивается способность к тонким координированным движениям конечностями, особенно пальцами рук.

Вторичная моторная зона (поле 6) расположена как на латеральной поверхности полушарий, впереди прецентральной извилины (премоторная кора), так и на медиальной поверхности, соответствующей коре верхней лобной извилины (дополнительная моторная область). Вторичная двигательная кора в функциональном плане имеет главенствующее значение по отношению к первичной двигательной коре, осуществляя высшие двигательные функции, связанные с планированием и координацией произвольных движений. Здесь в наибольшей степени регистрируется медленно нарастающий отрицательный потенциал готовности, возникающий примерно за 1 с до начала движения. Кора поля 6 получает основную часть импульсации от базальных ганглиев и мозжечка, участвует в перекодировании информации о плане сложных движений.

Раздражение коры поля 6 вызывает сложные координированные движения, например поворот головы, глаз и туловища в противоположную сторону, содружественные сокращения сгибателей или разгибателей на противоположной стороне. В премоторной коре расположены двигательные центры, связанные с социальными функциями человека: центр письменной речи в заднем отделе средней лобной извилины (поле 6), центр моторной речи Брока в заднем отделе нижней лобной извилины (поле 44), обеспечивающие речевой праксис, а также музыкальный моторный центр (поле 45), обеспечивающий тональность речи, способность петь. Нейроны двигательной коры получают афферентные входы через таламус от мышечных, суставных и кожных рецепторов, от базальных ганглиев и мозжечка. Основным эфферентным выходом двигательной коры на стволовые и спинальные моторные центры являются пирамидные клетки V слоя. Основные доли коры большого мозга представлены на рис. 3.

Рис. 3. Четыре основные доли коры головного мозга (лобная, височная, теменная и затылочная); вид сбоку. В них расположены первичная двигательная и сенсорная области , двигательные и сенсорные области более высокого порядка (второго, третьего и т.д.) и ассоциативная (неспецифичная) кора

Ассоциативные области коры (неспецифическая, межсенсорная, межанализаторная кора) включают участки новой коры большого мозга, которые расположены вокруг проекционных зон и рядом с двигательными зонами, но не выполняют непосредственно чувствительных или двигательных функций, поэтому им нельзя приписывать преимущественно сенсорные или двигательные функции, нейроны этих зон обладают большими способностями к обучению. Границы этих областей обозначены недостаточно четко. Ассоциативная кора является филогенетически наиболее молодой частью новой коры, получившей наибольшее развитие у приматов и у человека. У человека она составляет около 50% всей коры или 70 % неокортекса. Термин «ассоциативная кора» возник в связи с существовавшим представлением о том, что эти зоны за счет проходящих через них кортико-кортикальных соединений связывают двигательные зоны и одновременно служат субстратом высших психических функций. Основными ассоциативными зонами коры являются: теменно-височно-затылочная, префронтальная кора лобных долей и лимбическая ассоциативная зона.

Нейроны ассоциативной коры являются полисенсорными (полимодальными): они отвечают, как правило, не на один (как нейроны первичных сенсорных зон), а на несколько раздражителей, т. е. один и тот же нейрон может возбуждаться при раздражении слуховых, зрительных, кожных и др. рецепторов. Полисенсорность нейронов ассоциативной коры создается кортико-кортикальными связями с разными проекционными зонами, связями с ассоциативными ядрами таламуса. В результате этого ассоциативная кора представляет собой своеобразный коллектор различных сенсорных возбуждений и участвует в интеграции сенсорной информации и в обеспечении взаимодействия сенсорных и моторных областей коры.

Ассоциативные области занимают 2-й и 3-й клеточные слои ассоциативной коры, на которых происходит встреча мощных одномодальных, разномодальных и неспецифических афферентных потоков. Работа этих отделов коры мозга необходима не только для успешного синтеза и дифференцировки (избирательного различения) воспринимаемых человеком раздражителей, но и для перехода к уровню их символизации, т. е. для оперирования значениями слов и использования их для отвлеченного мышления, для синтетического характера восприятия.

С 1949 г. широкую известность получила гипотеза Д. Хебба, постулирующая в качестве условия синаптической модификации совпадение пресинаптической активности с разрядом пост-синаптического нейрона, поскольку не всякая активность синапса ведет к возбуждению постсинаптического нейрона. На основании гипотезы Д. Хебба можно предположить, что отдельные нейроны ассоциативных зон коры связаны разнообразными путями и образуют клеточные ансамбли, выделяющие «подобразы», т.е. соответствующие унитарным формам восприятия. Эти связи, как отмечал Д.Хебб, настолько хорошо развиты, что достаточно активировать один нейрон, как возбуждается весь ансамбль.

Аппаратом, выполняющим роль регулятора уровня бодрствования, а также осуществляющим избирательную модуляцию и актуализацию приоритета той или иной функции, является модулирующая система мозга, которую часто называют лимбико-ретикулярный комплекс, или восходящая активирующая система. К нервным образованиям этого аппарата относятся лимбическая и неспецифические системы мозга с активирующими и инактивируюшими структурами. Среди активирующих образований прежде всего выделяют ретикулярную формацию среднего мозга, задний гипоталамус, голубое пятно в нижних отделах ствола мозга. К инактивирующим структурам относят преоптическую область гипоталамуса, ядра шва в стволе мозга, фронтальную кору.

В настоящее время по таламокортикальным проекциям предлагают выделять три основные ассоциативные системы мозга: таламотеменную, таламолобную и таламовисочную.

Таламотеменная система представлена ассоциативными зонами теменной коры, получающими основные афферентные входы от задней группы ассоциативных ядер таламуса. Теменная ассоциативная кора имеет эфферентные выходы на ядра таламуса и гипоталамуса, в моторную кору и ядра экстрапирамидной системы. Основными функциями таламотеменной системы являются гнозис и праксис. Под гнозисом понимают функцию различных видов узнавания: формы, величины, значения предметов, понимание речи, познание процессов, закономерностей и др. К гностическим функциям относится оценка пространственных отношений, например, взаимного расположения предметов. В теменной коре выделяют центр стереогнозиса, обеспечивающий способность узнавания предметов на ощупь. Вариантом гностической функции является формирование в сознании трехмерной модели тела («схемы тела»). Под праксисом понимают целенаправленное действие. Центр праксиса находится в надкорковой извилине левого полушария, он обеспечивает хранение и реализацию программы двигательных автоматизированных актов.

Таламолобная система представлена ассоциативными зонами лобной коры, имеющими основной афферентный вход от ассоциативного медиодорсального ядра таламуса, других подкорковых ядер. Основная роль лобной ассоциативной коры сводится к инициации базовых системных механизмов формирования функциональных систем целенаправленных поведенческих актов (П. К.Анохин). Префронтальная область играет главную роль в выработке стратегии поведения. Нарушение этой функции особенно заметно, когда необходимо быстро изменить действие и когда между постановкой задачи и началом ее решения проходит некоторое время, т.е. успевают накопиться раздражители, требующие правильного включения в целостную поведенческую реакцию.

Таламовисочная система. Некоторые ассоциативные центры, например, стереогнозиса, праксиса, включают в себя и участки височной коры. В височной коре расположен слуховой центр речи Вернике, находящийся в задних отделах верхней височной извилины левого полушария. Этот центр обеспечивает речевой гнозис: распознание и хранение устной речи как собственной, так и чужой. В средней части верхней височной извилины находится центр распознания музыкальных звуков и их сочетаний. На границе височной, теменной и затылочной долей находится центр чтения, обеспечивающий распознание и хранение образов.

Существенную роль в формировании поведенческих актов играет биологическое качество безусловной реакции, а именно ее значение для сохранения жизни. В процессе эволюции это значение было закреплено в двух противоположных эмоциональных состояниях – положительном и отрицательном, которые у человека составляют основу его субъективных переживаний -- удовольствия и неудовольствия, радости и печали. Во всех случаях целенаправленное поведение строится в соответствии с эмоциональным состоянием, возникшим при действии раздражителя. Во время поведенческих реакций отрицательного характера напряжение вегетативных компонентов, особенно сердечно-сосудистой системы , в отдельных случаях, особенно в непрерывных так называемых конфликтных ситуациях, может достигать большой силы, что вызывает нарушение их регуляторных механизмов (вегетативные неврозы).

В этой части книги рассмотрены основные общие вопросы аналитико-синтетической деятельности мозга, которые позволят перейти в последующих главах к изложению частных вопросов физиологии сенсорных систем и высшей нервной деятельности.

Это происходит только в том случае, если человек испытал какое-либо интенсивное состояние экстатического характера, которое лежит в основе почти всего трансцендентного опыта, описанного в трактатах по медитации и йоге. Секс, будучи источником энергии, предоставляет лучшие и наиболее эффективные средства для того, чтобы испытать подобное состояние.

Спинной и головной мозг целиком окружены спинномозговой жидкостью , и именно эта жидкость, как считают даосы, ответственна за прохождение сексуальной энергии из почек в головной мозг. Эффект просветления вызывается сочетанием повышения температуры крови и движения сексуальной энергии, достигающей верхней части головы. Не забывайте, что довольно много этой жидкости находится в сенсорной зоне коры головного мозга.

И Тигрицы, и даосы стремятся к стимуляции сенсорной зоны коры. Методы могут отчасти отличаться, но конечная цель одна и та же. Тигрица добивается просветления сознания путем поглощения мужской сексуальной энергии, которое в даосских книгах называется восстановлением инь через ян. Мужчина-даос достигает просветления посредством возвращения сексуальной энергии в мозг, или восстановления инь через ян.

Тигрица, при помощи полной концентрации на оральной стимуляции полового члена мужчины, может достичь состояния высочайшей восприимчивости , результатом которой становится способность Тигрицы поглощать мужскую сексуальную энергию и переживать духовную трансформацию. Главный смысл состоит в усиленной стимуляции гипофиза и гипоталамуса, чтобы они реагировали на пределе возможностей и вырабатывали гормоны, способные восстановить молодость.

Оргазм

Обсудив то, как западная наука и даосская духовная алхимия воспринимают процесс поглощения энергии, теперь мы можем более подробно поговорить об оргазме как таковом.

Непосредственно перед или сразу после оргазма сознание человека находится в состоянии повышенной восприимчивости . Во время оргазма в нем происходит остановка времени и вся нервная система сосредоточивается на ощущениях и выделении половых жидкостей.

Чем интенсивнее оргазм, тем насыщеннее и ярче ощущения и восприятие.

Также оргазм активно стимулирует затылочную долю головного мозга (которая контролирует зрение) и снижает активность двигательной зоны коры (которая контролирует произвольные движения). Во время оргазма мы воспринимаем и чувствуем окружающий мир через остро сконцентрированные ощущения. Цвета нам кажутся ярче, а сознание наполняется светящимися образами. Тело больше не контролирует произвольные движения, а совершает лишь те, что способствуют получению оргазма. Даже слуховой и речевой центры головного мозга находятся в состоянии повышенной ак­тивности.

Что касается повышения остроты слуха и зрения, то многие сексуальные неудачи происходят как раз из-за того, что сексуальный партнер говорит во время оргазма второго партнера какие-нибудь неподходящие слова. Человек в этот момент настолько чувствителен, что слова обиды или неодобрения западают очень глубоко в сознание и влияют на его сексуальное поведение в будущем. Именно поэтому, как вы узнаете позже, во время полового акта Тигрица всегда выказывает глубокое одобрение в отношении пениса партнера, качества его спермы и действий.

После оргазма весь организм погружается в состояние покоя, и поэтому большинство сексологов считают его транквилизатором. Это происходит потому, что гипофиз, который также контролирует выработку успокаивающих гормонов, моментально отправляет их в эндокринную систему, что является естественной защитой организма от слишком интенсивных и длительных ощущений. Реакция на успокаивающие гормоны более ярко выражена у мужчин, чем у женщин, так как организм последних лучше приспособлен к множественным оргазмам; обычно для того, чтобы гипофиз выбросил в женский организм успокаивающие гормоны, требуется больше одного оргазма. Этим объясняется тот факт, что женщины после оргазма могут быть очень энергичными, так как все еще находятся под действием гонадотропинов.

Мужчины тоже могут получать множественные оргазмы, но это происходит только тогда, когда последующая стимуляция достаточно интенсивна и между оргазмом и новым возбуждением проходит определенное количество времени, нужное для того, чтобы успо­каивающие гормоны потеряли активность. Интенсивность первого оргазма определяет количество спящих гормонов, выбрасываемых гипофизом в организм.

На мужчин, у которых часто происходит семяизвержение, успокаивающие гормоны с возрастом влияют все меньше и меньше. Чтобы- проверить действие этих гормонов, мужчина должен сдерживать эякуляцию в течение двух недель или около того. Тогда во время семяизвержения ему будет трудно не закрыть глаза. Эти успокаивающие гормоны необходимы для восстановления мужской юности, поэтому эякуляция не должна происходить часто. После этого во время эякуляции эти гормоны будут сильнее влиять на всю эндокринную систему. Тигрица извлекает пользу не только из своего оргазма, но и из оргазма партнера. Увеличивая интенсивностьоргазма мужчины, она может достичь состояния высочайшей восприимчивости, в котором поглощает и его оргазм, и его сексуальную энергию. Она достигает этого, целиком концентрируясь на максимальном возбуждении мужчины и его оргазме - в том смысле, что все ее внимание обращено на его пенис и сперму. Как ребенок, находящийся в возбужденном и нетерпеливом состоянии перед тем, как открыть подарок на день рождения, она стонет в ожидании его оргазма. Держа его пенис на расстоянии пяти-семи сантиметров от своего лица, она смотрит прямо на головку члена, а когда сперма выделяется, она представляет, как энергия его оргазма проникает прямо в верхнюю часть ее головы, Когда у мужчины заканчивается семяизвержение, она закрывает глаза и водит зрачками вверх и вниз, как будто пристально рассматривает верхнюю часть мозга. Она обращает все свое внимание на ощущение тепла его семени на своем лице. Когда головка его пениса находится у нее во рту, она совершает сосательные движения девять раз (очень аккуратно и без усилия, если пенис слишком чувствительный) и снова представляет себе энергию его члена, проникающую в верхнюю часть ее головы.

В этих своих практиках она в полной мере использует свое воображение. Когда мы стареем и испытываем на себе неблагоприятное влияние окружающей среды и давление общества, мы теряем способность использовать воображение. Воображение является одним из мощнейших инструментов, который мы, люди, увы, используем слишком редко. В детском возрасте фантазия мешает нам отличать воображаемых друзей от настоящих и дает возможность зримо и ярко представлять все наши цели и надежды. С возрастом мы используем воображение все меньше и меньше, хотя оно и участвует в формировании религиозных переживаний: мы воспринимаем своего бога как настоящего, живого человека. В этом отношении мы называем воображение верой, но она функционирует точно таким же образом.

Ребенок использует воображение чаще, чем рациональное мышление, которое разрушает силу воображения. Белая тигрица использует свое воображение в полной мере и в результате получает возможность воспринимать сексуальную энергию как нечто вполне материальное. Мы должны помнить, что все, что существует в мире, является материальным воплощением идеи.

Подобно тому, как некоторые успешные спортсмены, бизнесмены и кинозвезды еще в подростковом возрасте мечтали о том, чтобы стать богатыми и знаменитыми, чувствуя, что это непременно случится, Тигрицы представляют и воспринимают себя уже достигшими юности и бессмертия - и совершенно уверены, что так оно и будет. Используя свое воображение, Тигрица способна увеличить интенсивность не только своего собственного оргазма, но и оргазма партнера и воссоздать духовное и физическое состояние своей молодости.

Тигрица увеличивает интенсивность своих половых ощущений, используя мужчин, которых называют Зелеными драконами. Она поступает так для того, чтобы избежать рутины, являющейся отрицательным последствием длительных сексуальных отношений с одним партнером, у которого интенсивность ощущений со временем чаще всего постепенно снижается. Кроме того, как гласит пословица, близкие отношения рождают презрение. С одним мужчиной ее сексуальное желание станет реализовываться в сексе, целью которого будет продолжение рода, а не духовное возрождение. Утратив стремление к возрождению, она уже не может измениться. Также Тигрица использует других мужчин для возбуждения своего основного партнера, Нефритового дракона, чтобы он, наблюдая за тем, как она занимается с ними любовью, тоже мог сделать свой оргазм более интенсивным. Таким образом, увеличение интенсивности своего оргазма и оргазма партнера является для Тигрицы ключом к очищению, сохранению и восстановлению молодости. С этой точки зрения секс становится лекарством.

Соответствующие ядра таламуса связаны восходящими путями с корой больших полушарий, где образуются корковые центры анализаторных систем (в различных структурах новой коры). К коре поступают также те пути обонятельной системы, которые минуют таламус. Восприятие и анализ обонятельной информации производится в древней и старой коре.

Подавляющее большинство нейронов, образующих кору больших полушарий, выполняет аналитико-синтетическую функцию, обеспечивающую оценку поступающей афферентной информации и организующую программы целенаправленной деятельности. В коре (см. гл. 19) выделяют более 50 полей (по Бродману). В плане рассматриваемого вопроса соответствующие зоны коры можно подразделить на две группы:

1 . Сенсорные зоны коры . К ним адресуются сигналы от релейных ядер таламуса Различают три основных зоны. Cоматосенсорные: SI расположена на постцентральной извилине, и SII - на верхней стенке боковой борозды, разделяющeй теменную и височную доли. Слуховые находятся в височной, а зрительные - в затылочной доле.

2. Ассоциативные зоны . Сюда прежде всего адресуются сигналы от ассоциативных ядер таламуса. Выделяют две основные ассоциативные зоны: в области лобной доли впереди от прецентральной извилины и на границе между теменной, затылочной и височной долями (в области теменной доли). По развитости именно этих отделов мозг человека существенно превосходит всех животных.

Функциональные колонки . В коре больших полушарий нейроны располагаются по типу функциональных колонок диаметром от 0,2 до 1,0 мм. Все шесть слоев клеток коры, лежащих перпендикулярно коре, имеют отношение к переработке информации от соответствующих периферических рецепторов. Анатомически такие колонки складываются из тысяч нейронов, в которых возникает ПД при нанесении раздражения на соответствующий рецептор.

В каждой колонке существует своего рода иерархия нейронов, основанная на различных возбудительных и тормозных взаимодействиях. В зависимости от конкретной сенсорной системы, ее значимости для организма в коре встречаются нейроны различного типа реагирования. В простых нейронах характер возникающих импульсов очень близок к характеру импульсов в связанных с ними рецепторах. В сложных - в ответ на периферические стимулы импульсация может существенно отличаться от той, которая возникла в рецепторе. Например, среди нейронов тактильных зон коры можно обнаружить такие, которые реагируют лишь на стимул, движущийся по коже в определенном направлении.

В сенсорных зонах коры взаимодействие различных нейронов и центров обеспечивает узнавание соответствующего раздражителя, его идентификацию.

В ассоциативные зоны коры адресуются импульсы от различных рецепторов. Благодаря этому появляется возможность более точной и всесторонней оценки какого-либо сигнала, определение ценности и биологической значимости его. Здесь завершается формирование соответствующихощущений . Причем окончательное формирование ощущений происходит лишь при совместном действии сенсорных и ассоциативных зон коры и ряда важнейших подкорковых структур (см. гл. 19). С функцией ассоциативных зон связаны процессы обучения и памяти. Анализ поступающей информации служит основой формирования программ целенаправленного поведения. Это наиболее сложный процесс, совершающийся в ЦНС благодаря взаимодействию многих образований ее. Для выполнения полного объема всех этих жизненно важных функций мобилизуются такжелимбическая система (организация эмоций), вегетативная нервная система (регуляция функций внутренних органов, обмена веществ), моторные области коры и подкорки (регуляция движений).

Кроме того, кора больших полушарий выполняет еще одну очень важную функцию: путем нисходящих (эфферентных) влияний она участвует в регуляции процесса поступления сенсорной информации , в контроле ее обработки во всех нижележащих отделах ЦНС. В результате поступление афферентации, начиная от периферических рецепторов и вплоть до таламуса, может либо затормаживаться, либо, напротив, облегчаться.

Высшим отделом ЦНС является кора большого мозга (кора боль­ших полушарий). Она обеспечивает совершенную организацию по­ведения животных на основе врожденных и приобретенных в онто­генезе функций.

В коре головного мозга выделяют: древнюю, старую и новую кору. Древняя и старая кора объединяются с некоторыми близлежащими ядрами и образуют лимбическую систему. Толщина новой коры - 3 мм, включает много извилин, площадь новой коры 2500 см 2 , 3 вида структур коры головного мозга: нервные клетки, отростки нервных клеток, нейроглия.

В составе коры головного мозга - различные по строению нейроны - звездчатые, большие и малые пирамидные, веретенообразные, корзинчатые и другие.

В функциональном отношении все нейроны подразделяются на:

1. афферентные (звездчатые клетки) - к ним идут импульсы от специфических путей и возникают специфические ощущения. Они передают импульсы к вставочным и эфферентным нейронам. Группа полисенсорных нейронов - получает импульсы от ассоциативных ядер зрительных бугров;

2. эфферентные нейроны (большие пирамидные клетки) - импульсы от них идут на периферию и обеспечивают определенный вид деятельности;

3. вставочные нейроны (малые пирамидные, веретенообразные и другие). Вставочные нейроны могут быть возбуждающими и тормозными (большие и малые корзинчатые нейроны, нейроны с кистеобразными аксонами, канделяброобразные нейроны).

Функции отростков нервных клеток:

1. обеспечивают связь в пределах коры головного мозга между выше- и нижележащими клетками;

2. обеспечивают связь в пределах одного полушария коры головного мозга;

3. комиссуральные - выходят из коры головного мозга, проходят через комиссуру и идут в кору головного мозга противоположного полушария;

4. выходят из коры головного мозга и идут в нисходящем направлении, образуя пирамидные и экстрапирамидные пути.

Высшим отделом ЦНС является кора больших полушарий, ее площадь составляет 2200 см2.

Кора больших полушарий имеет пяти-, шестислойное строение. Нейроны представлены сенсорными, моторными (клетками Бетца), интернейронами (тормозными и возбуждающими нейронами).

Кора полушарий построена по колончатому принципу. Колонки – функциональные единицы коры, делятся на микромодули, которые имеют однородные нейроны.

По определению И. П. Павлова, кора больших полушарий – главный распорядитель и распределитель функций организма.

Основные функции коры больших полушарий:

1) интеграция (мышление, сознание, речь);

2) обеспечение связи организма с внешней средой, приспособление его к ее изменениям;

3) уточнение взаимодействия между организмом и системами внутри организма;

4) координация движений (возможность осуществлять произвольные движения, делать непроизвольные движения более точными, осуществлять двигательные задачи).

Эти функции обеспечиваются корригирующими, запускающими, интегративными механизмами.

И. П. Павлов, создавая учение об анализаторах, выделял три отдела: периферический (рецепторный), проводниковый (трех-нейронный путь передачи импульса с рецепторов), мозговой (определенные области коры больших полушарий, где происходит переработка нервного импульса, который приобретает новое качество). Мозговой отдел состоит из ядер анализатора и рассеянных элементов.

Согласно современным представлениям о локализации функций при прохождении импульса в коре головного мозга возникают три типа поля.

1. Первичная проекционная зона лежит в области центрального отдела ядер-анализаторов, где впервые появился электрический ответ (вызванный потенциал), нарушения в области центральных ядер ведут к нарушению ощущений.

2. Вторичная зона лежит в окружении ядра, не связана с рецепторами, по вставочным нейронам импульс идет из первичной проекционной зоны. Здесь устанавливается взаимосвязь между явлениями и их качествами, нарушения ведут к нарушению восприятий (обобщенных отражений).

3. Третичная (ассоциативная) зона имеет мультисенсорные нейроны. Информация переработана до значимой. Система способна к пластической перестройке, длительному хранению следов сенсорного действия. При нарушении страдают форма абстрактного отражения действительности, речь, целенаправленное поведение.

Совместная работа больших полушарий и их асимметрия.

Для совместной работы полушарий имеются морфологические предпосылки. Мозолистое тело осуществляет горизонтальную связь с подкорковыми образованиями и ретикулярной формацией ствола мозга. Таким образом осуществляется содружественная работа полушарий и реципрокная иннервация при совместной работе.

Функциональная асимметрия. В левом полушарии доминируют речевые, двигательные, зрительные и слуховые функции. Мыслительный тип нервной системы является левополушарным, а художественный – правополушарным.

Сенсорные зоны - это функциональные зоны коры головного мозга, которые через восходящие нервные пути получают сенсорную информацию от большинства рецепторов тела.

Первичные сенсорные и моторные зоны занимают менее 10% поверхности коры головного мозга и обеспечивают наиболее простые сенсорные и двигательные функции.

Ассоциативные зоны - это функциональные зоны коры головного мозга. Они связывают вновь поступающую сенсорную информацию с полученой ранее и хранящейся в блоках памяти, а также сравнивают между собой информацию, получаемую от разных рецепторов. Сенсорные сигналы интерпретируются, осмысливаются и при необходимости используются для определения наиболее подходящих ответных реакций, которые выбираются в ассоциативной зоне и передаются в связанную с ней двигательную зону. Таким образом, ассоциативные зоны участвуют в процессах запоминания, учения и мышления, и результаты их деятельности составляют то, что обычно называют интеллектом.

Отдельные крупные ассоциативные области расположены в коре рядом с соответствующимисенсорными зонами. Например, зрительная ассоциативная зона расположена в затылочной зоненепосредственно впереди сенсорной зрительной зоны и осуществляет описанные вышеассоциативные функции, связанные со зрительными ощущениями. Например, звуковая ассоциативная зона анализирует звуки, разделяя их на категории, а затем передает сигналы в более специализированные зоны, такие как речевая ассоциативная зона, где воспринимается смысл услышанных слов.

Двигательные зоны - это функциональные зоны коры головного мозга, посылающие двигательные импульсы к произвольным мышцам по нисходящим путям, которые начинаются в белом веществе больших полушарий.

Локализация функций в коре головного мозга.

Существует две точки зрения: 1) кора выполняет общие функции; 2) имеются зоны, в которых локализуются определенные функции.

Кора делится на поля, которые объединяются в зоны. Зоны отвечают за определенные функции, поля в этих зонах - за какую-то часть этой функции.

В соответствии с классификацией Бродмана, кора разделена 11 областей и на 52 поля: 1) постцентральная область (1,2,3,43); 2) прецентральная область (4,6); 3) лобная область (8,9,10,11,12,44,45,46,47); 4) островковая область – 13,14,15,16; 5) теменная область – 5,7,40,39; 6) височная область – 20,21,22,36,37,38,41,42,52; 7) затылочная область – 17,18,19; 8) поясная область – 23,31,24,32,33,25; 9) ретросплениальная область – 26,29,30; 10) гиппокампова область – 27,28,34,35,48; 11) обонятельная область – 51, обонятельный бугорок.


Рис. 6 Цитоархитектонические поля по Бродману

А – верхнелатеральная поверхность; Б – медиальная поверхность;

Корковые поля различаются по форме, величине и количеству расположенных в них клеток, общее количество нейронов в коре около 14 млрд.

Экспериментальными исследованиями установлено наличие в коре мозга трех зон, связанных со специфическими функциями и участками тела - двигательных, сенсорных и ассоциативных. Взаимосвязь между зонами позволяет координировать произвольные и непроизвольные формы деятельности, а также психические функции личности.

Павлов рассматривал кору большого мозга как совокупность корковых концов анализаторов. Корковый конец анализатора имеет не строго ограниченные границы, а состоит из ядерной и рассеянной частей. Ядро представляет собой точную проекцию в коре периферических рецепторов данной области и является необходимым для осуществления общего анализа и синтеза. Рассеянные элементы находятся по периферии ядра или могут быть разбросаны далеко от него. В них осуществляются более простые анализ и синтез.

Сенсорные зоны.

Сенсорные зоны занимают участки мозга, связанные с определенными видами чувствительности. В эти зоны поступает сенсорная информация.

Первичные сенсорные зоны - это области сенсорной коры, раздражение или разрушение которых вызывает четкие, постоянные изменения чувствительности организма (ядра анализаторов по Павлову).

Вокруг первичных зон находятся менее локализованные вторичные сенсорные зоны , нейроны которых отвечают на действие нескольких раздражителей.

Рассмотрим основные первичные зоны коры.

1) зона кожно-мышечной чувствительности (соматосенсорная зона )– теменная кора, пост(задне)-центральная извилина, поля 1,2,3,5,7 – к этой зоне приходят проприоцептивные импульсы от скелетных мышц, а также импулься от тактильных, температурных и других рецепторов кожи. Самую большую площадь зоны занимает область кисти, голосового аппарата, головы. Наименьшую площадь занимают представительства туловища, нижних конечностей. При повреждении зоны нарушается кожно-мышечная чувствительность

2) зрительная зона – ядро зрительного анализатора находится на медиальной поверхности затылочной доли полушарий, поля 17, 18, 19 - все зрительные ощущения. Ядро зрительного анализатора правого полушария связано проводящими путями с латеральной половиной сетчатки правого глаза и медиальной половиной сетчатки левого глаза. Ядро зрительного анализатора левого полушария связано с латеральной половиной сетчатки левого глаза и медиальной половиной сетчатки правого глаза.

3) Слуховая зона – ядро слухового анализатора лежит в средней части верхней височной извилины, обращенной к островку; к ним из полушарий подходят проводящие пути от рецепторов органа слуха как левой так и правой стороны. Височная доля, поля 20, 21 (нарушение равновесия), 22 (музыкальная глухость), 41 (информация от улитки - снижение слуха), 37.

4) Обонятельная зона – ядро обонятельного анализатора располагается в пределах основания обонятельного мозга, поле 11.

5) Вкусовая зона - древняя кора, ядро вкусового анализатора по одним данным находится в постцентральной извилине, близко к центрам языка, рта; по другим данным оно находится рядом с корковым концом обонятельного анализатора. Установлено, что расстройство вкуса наступает при поражении 43 поля.

Моторные зоны: двигательных зонах коры возникают импульсы, передающиеся по нисходящим путям к мышцам головы, туловища и конечностей. Ядро двигательного анализатора представлено полями 4 и 6, расположенными в предцентральной извилине и парацентральной извилине. Двигательные зоны каждого из полушарий связаны со скелетной мускулатурой противоположной стороны тела. Выделяют первичную и вторичную области.

1) Первичная область, моторная зона - переднецентральная извилина, 4 поле, работа сложной скелетной мускулатуры, большая часть регулирует работу мышц лица, кисти. При поражении этой зоны утрачивается способность к тонким, координированным движениям конечностей и особенно пальцами рук.

2) Вторичная двигательная зона, премоторная зона - поля 6,8,9,10,11 в лобной доле, сложные двигательные условные рефлексы, тонус скелетных мышц, регуляция работы внутренних органов, осуществляет высшие двигательные функции, связанные с планированием и координацией произвольных движений.

Описанные корковые концы анализаторов осуществляют анализ и синтез сигналов, поступающих из внешней и внутренней среды организма, составляют первую сигнальную систему. Согласно Павлову, в отличие от первой вторая сигнальная система есть только у человека и связана с развитием речи.

Ассоциативные зоны:

Включают участки новой коры большого мозга, которые расположены вокруг проекционных зон и рядом с двигательными зонами. Располагаются между сенсорными зонами - в них возникает возбуждение независимо от вида раздражителя.

Они не выполняют непосредственно чувствительных или двигательных функций. Нейроны этих зон обладают большими способностями к обучению.

Нейроны ассоциативной зоны отвечают не на один, а на несколько раздражителей.

Выделяют две основные ассоциативные системы мозга : таламотеменную и таламолобную.

Таламотеменная система представлена ассоциативными зонами теменной коры. Ее основные функции: гнозис и праксис. Гнозис - функция различных видов узнавания – формы, величины, значения предметов, понимание речи, познание процессов, закономерностей и др.

Праксис – целенаправленное действие, центр праксиса отвечает за хранение и реализация программы двигательных автоматизированных актов.

Таламолобная система представлена ассоциативными зонами лобной коры. Основная функция сводится к инициации базовых системных механизмов формирования функциональных систем целенаправленных поведенческих актов (Анохин).

Корковые концы анализаторов речи. Центры речи:

А) Двигательный центр - в нижней части передней центральной извилины, поле 44-45, 44 - центр Брока – обеспечивает речевой праксис, в этой части речедвигательного анализатора осуществляется анализ движений всех мышц губ, щек, языка, гортани, принимает участие в акте образования устной речи (произношение слов и предложений). Повреждение участка коры этой области (44 поле) приводит к двигательной афазии, т.е. утрате способности произносить слова. 45 – музыкальный моторный центр – обеспечивает тональность речи, способность петь, находится в центральных отделах лобной извилины; поражение 45 поля сопровождается аграмматизмом, т.е. утрате способности к составлению осмысленных предложений из отдельных слов. Центр письменной речи локализуется в заднем отделе средней лобной извилины, обеспечивает автоматизм письма.

Б) Слуховой центр осмысления устной речи - в задней части верхней височной извилины, поле 42, 22 (центр Вернике), 40, 37. При повреждении нарушается понимание смысла слов, но сохраняется говорливостью - амназия.

В) Зрительный центр – располагается в теменной доле, поля 39,40, обеспечивает восприятие письменной речи.

Сенсорные центры речи 2 и3 представлены только в левом полушарии.