Пучки проводящей системы сердца. Проводящая система. Строение проводящей системы сердца

Является автоматизм сокращений. Слаженная работа сердца, которая основана на последовательных сокращениях и расслаблениях мышечной ткани предсердий и желудочков, регулируется проводящей нервные импульсы клеточной структурой со сложным строением.

Проводящая система сердца - это важнейший механизм обеспечения жизнедеятельности человеческого организма, состоящий из генератора импульсов (пейсмейкера) и отдельных сложных образований, предназначенных для иннервации циклов работы миокарда. Состоящая из клеточной структуры, в основе которой лежит работа Р-клеток и Т-клеток, она призвана инициировать сердцебиение и координировать сокращение сердечных камер. Первый вид клеток обладает важной физиологической функцией автоматии - способностью к ритмическому сокращению без явно выраженной связи с воздействием каких-либо внешних раздражителей.

Т-клетки, в свою очередь, обладают способностью передачи сократительных импульсов, генерируемых Р-клетками, к миокарду, что обеспечивает его бесперебойную работу. Таким образом, проводящая система которой основана на слаженном взаимодействии этих двух групп клеток, является единым биологическим механизмом, структурно входящим в сердечный аппарат.

Проводящая система сердца человека состоит из нескольких функциональных компонентов: синоатриального и атриовентрикулярного узлов, а также пучка Гиса с правой и левой ножками, заканчивающимися волокнами Пуркинье. Синоатриальный (синусовый) узел, расположенный в области правого предсердия, представляет собой небольшую массу мышечных волокон эллипсовидной формы. Именно в этом компоненте, с которого и начинается проводящая система сердца, зарождаются вызывающие сократительные реакции всего сердца. Нормальной автоматией синоатриального узла считается от пятидесяти до восьмидесяти импульсов в минуту.

Атриовентрикулярный компонент, находящийся ниже эндокарда в заднем сегменте межпредсердной перегородки, выполняет важную функцию по задержке, фильтрации и перераспределению входящих импульсов, вырабатываемых и посылаемых синоатриальным узлом. Проводящая система сердца выполняет также регуляторную и распределительную функции, возложенные на ее структурный компонент - атриовентрикулярный узел.

Необходимость таких функции обусловлена тем, что волна нервных импульсов, мгновенно распространяясь по системе предсердий и вызывая их ответную сократительную реакцию, сразу же проникнуть в желудочки сердца не в состоянии, поскольку миокард предсердий отделен от желудочков фиброзной тканью, не пропускающей нервные импульсы. И лишь в области атриовентрикулярного узла такая непреодолимая преграда отсутствует. Это заставляет волну импульсов в поисках выхода устремляться к этому важному компоненту, где и происходит их равномерное распределение по всему сердечному аппарату.

Проводящая система сердца также содержит в своей структуре связывающий предсердный и желудочковый миокарды, и образующие синапсы на кардиомиоцитарных клетках и обеспечивающие необходимое сопряжение мышечного сокращения и нервного возбуждения. По своей сути данные волокна являются конечным разветвлением пучка Гиса, присоединенным к субэндокардиальным сплетениям желудочков сердца.

В естественных условиях клетки миокарда находятся в состоянии ритмической активности (возбуждения), поэтому об их потенциале покоя можно говорить лишь условно. У большинства клеток он составляет около 90 мВ и определяется почти целиком концентра­ционным градиентом ионов К+.

Потенциалы действия (ПД), зарегистрированные в разных от­делах сердца при помощи внутриклеточных микроэлектродов, су­щественно различаются по форме, амплитуде и длительности (рис. 7.3, А). На рис. 7.3, Б схематически показан ПД одиночной клетки миокарда желудочка. Для возникновения этого потенциала потребовалось деполяризовать мембрану на 30 мВ. В ПД различают следующие фазы: быструю начальную деполяризацию - фаза 1; медленную реполяризацию, так называемое плато - фаза 2; быст­рую реполяризацию - фаза 3; фазу покоя - фаза 4.

Фаза 1 в клетках миокарда предсердий, сердечных проводящих миоцитов (волокна Пуркинье) и миокарда желудочков имеет ту же природу, что и восходящая фаза ПД нервных и скелетных мышечных волокон - она обусловлена повышением натриевой проницаемости, т. е. активацией быстрых натриевых каналов клеточной мембраны. Во время пика ПД происходит изменение знака мембранного по­тенциала (с -90 до +30 мВ).

Деполяризация мембраны вызывает активацию медленных на­трий-кальциевых каналов. Поток ионов Са2+ внутрь клетки по этим каналам приводит к развитию плато ПД (фаза 2). В период плато натриевые каналы инактивируются и клетка переходит в состояние абсолютной рефрактерности. Одновременно происходит активация калиевых каналов. Выходящий из клетки поток ионов К+ обеспе­чивает быструю реполяризацию мембраны (фаза 3), во время ко­торой кальциевые каналы закрываются, что ускоряет процесс ре­поляризации (поскольку падает входящий кальциевый ток, деполя­ризующий мембрану).

Реполяризация мембраны вызывает постепенное закрывание ка­лиевых и реактивацию натриевых каналов. В результате возбудимость миокардиальной клетки восстанавливается - это период так называемой относительной рефрактерности.

В клетках рабочего миокарда (предсердия, желудочки) мембран­ный потенциал (в интервалах между следующими друг за другом ПД) поддерживается на более или менее постоянном уровне. Однако в клетках синусно-предсердного узла, выполняющего роль водителя ритма сердца, наблюдается спонтанная диастолическая деполяриза­ция (фаза 4), при достижении критического уровня которой (при­мерно -50 мВ) возникает новый ПД (см. рис. 7.3, Б). На этом механизме основана авторитмическая активность указанных сердеч­ных клеток. Биологическая активность этих клеток имеет и другие важные особенности: 1) малую крутизну подъема ПД; 2) медленную реполяризацию (фаза 2), плавно переходящую в фазу быстрой реполяризации (фаза 3), во время которой мембранный потенциал достигает уровня -60 мВ (вместо -90 мВ в рабочем миокарде), после чего вновь начинается фаза медленной диастолической депо­ляризации. Сходные черты имеет электрическая активность клеток предсердно-желудочкового узла, однако скорость спонтанной диасто­лической деполяризации у них значительно ниже, чем у клеток синусно-предсердного узла, соответственно ритм их потенциальной автоматической активности меньше.

Ионные механизмы генерации электрических потенциалов в клетках водителя ритма полностью не расшифрованы. Установлено, что в развитии медленной диастолической деполяризации и мед­ленной восходящей фазы ПД клеток синусно-предсердного узла ведущую роль играют кальциевые каналы. Они проницаемы не только для ионов Са2+, но и для ионов Na+. Быстрые нат­риевые каналы не принимают участия в генерации ПД этих клеток.

Скорость развития медленной диастолической деполяризации ре­гулируется автономной (вегетативной) нервной системой. В случае влияния симпатической части медиатор норадреналин активирует медленные кальциевые каналы, вследствие чего скорость диастоли­ческой деполяризации увеличивается и ритм спонтанной активности возрастает. В случае влияния парасимпатической части медиатор АХ повышает калиевую проницаемость мембраны, что замедляет развитие диастолической деполяризации или прекращает ее, а также гиперполяризует мембрану. По этой причине происходит урежение ритма или прекращение автоматии.

Способность клеток миокарда в течение жизни человека нахо­диться в состоянии непрерывной ритмической активности обеспе­чивается эффективной работой ионных насосов этих клеток. В период диастолы из клетки выводятся ионы Na+, а в клетку возвращаются ионы К+. Ионы Са2+, проникшие в цитоплазму, поглощаются эндоплазматической сетью. Ухудшение кровоснабжения миокарда (ишемия) ведет к обеднению запасов АТФ и креатинфосфата в миокардиальных клетках; работа насосов нарушается, вследствие чего уменьшается электрическая и механическая активность мио­кардиальных клеток.

Функции проводящей системы сердца

Спонтанная генерация ритмических импульсов является резуль­татом слаженной деятельности многих клеток синусно-предсердного узла, которая обеспечивается тесными контактами (нексусы) и электротоническим взаимодействием этих клеток. Возникнув в синусно-предсердном узле, возбуждение распространяется по проводящей системе на сократительный миокард.

Особенностью проводящей системы сердца является способность каждой клетки самостоятельно генерировать возбуждение. Сущест­вует так называемый градиент автоматии, выражающийся в убывающей способности к автоматии различных участков прово­дящей системы по мере их удаления от синусно-предсердного узла, генерирующего импульса с частотой до 60-80 в минуту.

В обычных условиях автоматия всех нижерасположенных уча­стков проводящей системы подавляется более частыми импульсами, поступающими из синусно-предсердного узла. В случае поражения и выхода из строя этого узла водителем ритма может стать предсердно-желудочковый узел. Импульсы при этом будут возникать с частотой 40-50 в минуту. Если окажется выключенным и этот узел, водителем ритма могут стать волокна предсердно-желудочкового пучка (пучок Гиса). Частота сердечных сокращений в этом случае не превысит 30-40 в минуту. Если выйдут из строя и эти водители ритма, то процесс возбуждения спонтанно может возник­нуть в клетках волокон Пуркинье. Ритм сердца при этом будет очень редким - примерно 20 в минуту.

Отличительной особенностью проводящей системы сердца явля­ется наличие в ее клетках большого количества межклеточных контактов - нексусов. Эти контакты являются местом перехода возбуждения с одной клетки на другую. Такие же контакты имеются и между клетками проводящей системы и рабочего миокарда. Бла­годаря наличию контактов миокард, состоящий из отдельных клеток, работает как единой целое. Существование большого количества межклеточных контактов увеличивает надежность проведения воз­буждения в миокарде.

Возникнув в синусно-предсердном узле, возбуждение распрост­раняется по предсердиям, достигая предсердно-желудочкового (атриовентрикулярного) узла. В сердце теплокровных животных суще­ствуют специальные проводящие пути между синусно-предсердным и предсердно-желудочковым узлами, а также между правым и левым предсердиями. Скорость распространения возбуждения в этих про­водящих путях ненамного превосходит скорость распространения возбуждения по рабочему миокарду. В предсердно-желудочковом узле благодаря небольшой толщине его мышечных волокон и особому способу их соединения возникает некоторая задержка проведения возбуждения. Вследствие задержки возбуждение доходит до пред­сердно-желудочкового пучка и сердечных проводящих миоцитов (волокна Пуркинье) лишь после того, как мускулатура предсердий успевает сократиться и перекачать кровь из предсердий в желудочки.

Следовательно, атриовентрикулярная задержка обеспечивает необ­ходимую последовательность (координацию) сокращений предсердий и желудочков.

Скорость распространения возбуждения в предсердно-желудочковом пучке и в диффузно расположенных сердечных проводящих миоцитах достигает 4,5-5 м/с, что в 5 раз больше скорости рас­пространения возбуждения по рабочему миокарду. Благодаря этому клетки миокарда желудочков вовлекаются в сокращение почти од­новременно, т. е. синхронно (см. рис. 7.2). Синхронность сокращения клеток повышает мощность миокарда и эффективность нагнетатель­ной функции желудочков. Если бы возбуждение проводилось не через предсердно-желудочковый пучок, а по клеткам рабочего мио­карда, т. е. диффузно, то период асинхронного сокращения продол­жался бы значительно дольше, клетки миокарда вовлекались в сокращение не одновременно, а постепенно и желудочки потеряли бы до 50% своей мощности.

Таким образом, наличие проводящей системы обеспечивает ряд важных физиологических особенностей сердца: 1) ритмическую ге­нерацию импульсов (потенциалов действия); 2) необходимую по­следовательность (координацию) сокращений предсердий и желу­дочков; 3) синхронное вовлечение в процесс сокращения клеток миокарда желудочков (что увеличивает эффективность систолы).

ФИЗИОЛОГИЯ СЕРДЦА

Самой главной функцией сердца является насосная . т. е. способность сердца непрерывно перекачивать кровь из вен в артерии, из большого круга кровообращения в малый. Цель этого насоса – доставлять кровь, несущую кислород и питательные вещества, ко всем органам и тканям, чтобы обеспечить их жизнедеятельность, забрать вредные продукты жизнедеятельности и донести их к обезвреживающим органам.

Сердце – это своеобразный вечный двигатель. В этом и последующих выпусках по физиологии сердца будут описаны сложнейшие механизмы, за счёт которых оно функционирует.

Выделяют 4 основные свойства сердечной ткани:

  • Возбудимость – способность отвечать на действия раздражителей возбуждением в виде электрических импульсов.
  • Автоматизм – способность самовозбуждаться, т. е. генерировать электрические импульсы в отсутствие внешних раздражителей.
  • Проводимость – способность проводить возбуждение от клетки к клетке без затухания.
  • Сократимость – способность мышечных волокон укорачиваться или увеличивать своё напряжение.

Средняя оболочка сердца – миокард – состоит из клеток, которые называются кардиомиоцитами. Кардиомиоциты не все одинаковы по своей структуре и выполняют различные функции. Выделяют следующие разновидности кардиомиоцитов:

  • Сократительные (рабочие, типичные) кардиомиоциты составляют 99 % массы миокарда и обеспечивают непосредственно сократительную функцию сердца.
  • Проводящие (атипичные, специализированные) кардиомиоциты . которые формируют проводящую систему сердца. Среди проводящих кардиомиоцитов различают 2 вида клеток – Р-клетки и клетки Пуркинье. Р-клетки (от англ. рale – бледный) обладают способностью периодически генерировать электрические импульсы, чем и обеспечивают функцию автоматизма. Клетки Пуркинье обеспечивают проведение импульсов ко всем отделам миокарда и имеют слабую способность к автоматизму.
  • Переходные кардиомиоциты или Т-клетки (от англ. transitional — переходный) расположены между проводящими и сократительными кардиомиоцитами и обеспечивают их взаимодействие (т. е. передачу импульса от проводящих клеток к сократительным).
  • Секреторные кардиомиоциты расположены преимущественно в предсердиях. Они выделяют в просвет предсердий натрийуретический пептид – гормон, регулирующий водно-электролитный баланс в организме и артериальное давление.

Все типы клеток миокарда не обладают способностью к делению, т. е. не способны к регенерации. Если у человека повышается нагрузка на сердце (например, у спортсменов), увеличение мышечной массы происходит за счёт увеличения объёма отдельных кардиомиоцитов (гипертрофии), а не их общего количества (гиперплазии).

Теперь рассмотрим подробнее строение проводящей системы сердца (рис. 1). Она включает в себя следующие основные структуры:

  • Синоатриальный (от латинского sinus – пазуха, atrium – предсердие), или синусовый , узел расположен на задней стенке правого предсердия около устья верхней полой вены. Он образован P-клетками, которые посредством Т-клеток связаны между собой и с сократительными кардиомиоцитами предсердий. От синоатриального узла в направлении к атриовентрикулярному узлу отходят 3 межузловых пучка: передний (пучок Бахмана), средний (пучок Венкебаха) и задний (пучок Тореля).
  • Атриовентрикулярный (от лат. аtrium – предсердие, ventriculum – желудочек) узел – расположен в зоне перехода от предсердных кардиомиоцитов к пучку Гиса. Содержит Р-клетки, но в меньшем количестве, чем в синусовом узле, клетки Пуркинье, Т-клетки.
  • Предсердно-желудочковый пучок, или пучок Гиса (описан немецким анатомом В. Гисом в 1893 г.) в норме является единственным путём проведения возбуждения от предсердий к желудочкам. Он отходит от атриовентрикулярного узла общим стволом и проникает в межжелудочковую перегородку. Здесь пучок Гиса делится на 2 ножки – правую и левую, идущие к соответствующим желудочкам. Левая ножка делится на 2 ветви – передневерхнюю и задненижнюю. Ветви пучка Гиса заканчиваются в желудочках сетью мелких волокон Пуркинье (описаны чешским физиологом Я. Пуркинье в 1845 г.).

1. Синусовый узел. 2. Атриовентрикулярный узел. 3. Ножки пучка Гиса. 4. Волокна Пуркинье.

У некоторых людей встречаются дополнительные (аномальные) проводящие пути (пучок Джеймса, пучок Кента), которые участвуют в возникновении нарушений сердечного ритма (например, синдрома преждевременного возбуждения желудочков).

В норме возбуждение зарождается в синусном узле, переходит на миокард предсердий, и, пройдя атриовентрикулярный узел, распространяется по ножкам пучка Гиса и волокнам Пуркинье на миокард желудочков.

Таким образом, нормальный ритм сердца определяется активностью синоатриального узла, который называют водителем ритма первого порядка, или истинным пейсмекером (от англ. pacemaker – «отбивающий шаг»). Автоматизм присущ также другим структурам проводящей системы сердца. Водитель второго порядка локализован в атриовентрикулярном узле. Водителями третьего порядка являются клетки Пуркинье, входящие в состав проводящей системы желудочков.

Продолжение следует.

Проводящая система сердца. Синусовый узел

На рисунке показана схема проводящей системы сердца . В ее состав входят: (1) синусный узел (который также называют синоатриальным или С-А узлом), где и происходит ритмическая генерация импульсов; (2) предсердные межузловые пучки, по которым импульсы проводятся от синусного узла к агриовентрикулярному узлу; (3) атриовентрикулярный узел, в котором происходит задержка проведения импульсов от предсердий к желудочкам; (4) атриовентрикулярный пучок, по которому импульсы проводятся к желудочкам; (5) левая и правая ножки А-В пучка, состоящие из волокон Пуркинье, благодаря которым импульсы достигают сократительного миокарда.

Синусный (синоатриальный) узел представляет собой небольшую эллипсовидную пластинку шириной 3 мм, длиной 15 мм и толщиной 1 мм, состоящую из атипических кардиомноцитов. С-А узел расположен в верхней части заднебоковой стенки правого предсердия у места впадения в него верхней полой вены. Клетки, входящие в состав С-А узла, практически не содержат сократительных филаментов; их диаметр всего лишь 3-5 мкм (в отличие от предсердных сократительных волокон, диаметр которых 10-15 мкм). Клетки синусного узла непосредственно связаны с сократительными мышечными волокнами, поэтому потенциал действия, возникший в синусном узле, немедленно распространяется на миокард предсердий.

Автоматия - это способность некоторых сердечных волокон самостоятельно возбуждаться и вызывать ритмические сокращения сердца. Способностью к автоматии обладают клетки проводящей системы сердца, в том числе клетки синусного узла. Именно С-А узел контролирует ритм сердечных сокращений, как мы увидим далее. А сейчас обсудим механизм автоматии.

Механизм автоматии синусного узла . На рисунке представлены потенциалы действия клетки синусного узла, записанные на протяжении трех сердечных циклов, и для сравнения - одиночный потенциал действия кардиомиоцита желудочка. Необходимо отметить, что потенциал покоя клетки синусного узла имеет меньшую величину (от -55 до -60 мВ) в отличие от типичного кардиомиоцита (от -85 до -90 мВ). Это различие объясняется тем, что мембрана узловой клетки в большей степени проницаема для ионов натрия и кальция. Вход этих катионов в клетку нейтрализует часть внутриклеточных отрицательных зарядов и уменьшает величину потенциала покоя.

Прежде чем перейти к механизму автоматии . необходимо вспомнить, что в мембране кардиомиоцитов существуют три типа ионных каналов, которые играют важную роль в генерации потенциала действия: (1) быстрые натриевые каналы, (2) медленные Na+/Са2+-каналы, (3) калиевые каналы. В клетках миокарда желудочков кратковременное открытие быстрых натриевых каналов (на несколько десятитысячных долей секунды) и вход ионов натрия в клетку приводит к быстрой деполяризации и перезарядке мембраны кардиомиоцита. Фаза плато потенциала действия, которая продолжается 0,3 сек, формируется за счет открытия медленных Na+/Ca -каналов. Затем открываются калиевые каналы, происходит диффузия ионов калия из клетки - и мембранный потенциал возвращается к исходному уровню.

В клетках синусного узла потенциал покоя меньше, чем в клетках сократительного миокарда (-55 мВ вместо -90 мВ). В этих условиях ионные каналы функционируют по-другому. Быстрые натриевые каналы инактивированы и не могут участвовать в генерации импульса. Дело в том, что любое уменьшение мембранного потенциала до -55 мВ на срок больший, чем несколько миллисекунд, приводит к закрытию инактивационных ворот во внутренней части быстрых натриевых каналов. Большая часть этих каналов оказывается полностью блокирована. В этих условиях могут открыться только медленные Na+/Ca -каналы, и поэтому именно их активация становится причиной возникновения потенциала действия. Кроме того, активация медленных Na/Ca -каналов обусловливает сравнительно медленное развитие процессов деполяризации и реполяризации в клетках синусного узла в отличие от волокон сократительного миокарда желудочков.

Не многие помнят из курса школьной анатомии, что проводящей системой сердца принято называть комплексные анатомические образования в сердечной мышце (узлы, пучки и переплетения волокон).

Основной особенностью таких сердечных комплексов можно считать их структуру, ведь состоят подобные элементы из нетипичных, а проводящих электрические импульсы мышечных волокон сердца.

В свою очередь, благодаря этой особенности сердечных комплексов обеспечивается координированная работа различных отделов сердечной мышцы – своевременность возбуждения, сокращения, расслабления предсердий и желудочков. Полноценное же функционирование различных отделов миокарда обеспечивает нормальную сердечную деятельность и, как следствие, жизнедеятельность организма в целом.

Физиология проводящей сердечной системы такова, что описываемая структура разделяется на два взаимосвязанных отдела:

  • Синоатриальную структура. Или же синусно-предсердная, включает в себя: узел Киса-Фляка, несколько пучков между узловой быстрой проводимости и пр.
  • Атриовентрикулярная структур. Либо же предсердно-желудочковая, которая включает атриовентрикулярный узел, пучок Гиса, волокна проводимости Пуркинье.

Проводящая система сердца

Что представляет собой и зачем организму так нужна проводящая система сердца, мы разобрались. Далее хочется рассмотреть подробно, какие функции возложены на проводящую систему сердца и что может происходить с человеком, если в его организме происходит нарушение проводимости в сердечной мышцы?

Подробнее о функциях этой системы

Прежде всего, следует заметить, что проводящая система сердца призвана:

  • координировать сокращения и расслабления миокарда, разделяя сократимость предсердий и желудочков;
  • обеспечивать ритмичность сокращений сердца, не допуская, чтобы возникало то или иное нарушение сердечного ритма;
  • способствовать нормальной сердечной деятельности, в том числе, поддержанию синусового ритма;
  • обеспечивать выполнение функции автоматизма миокарда.

Физиология синусового узла позволяет этой структуре осуществлять работу водителя ритма первого порядка, генерирующего, согласно принятым нормам, от 60 до 90 электрических импульсов за одну минуту.

Физиология атриовентрикулярного сплетения направлена на организацию значительной задержки волн возбуждения, для обеспечения возбуждения желудочков исключительно после полной сократимости предсердий, что позволяет добиться правильного синусового ритма работы сердца.

К сожалению, любое нарушение работы описываемых сердечных структур, ведет к расстройствам работы всего органа, к недостаточной проводимости волокон, нарушениям ритма, что рано или поздно может сказываться на функционировании всего организма.

Нарушение проводимости сердечных проявляется, прежде всего, развитием:

  • синдрома ослабления синусового узла;
  • образованием патологических добавочных проводящих путей между структурами предсердий и желудочков;
  • патологической блокады проводимости, той или иной структуры.

К сожалению, любое нарушение проводимости сердечной мышцы может негативным образом влиять на весь организм – первично, проявляться нарушениями ритма, а затем, может страдать физиология всех органов.

Основные ее составляющие

Мы уже отметили, что проводящая система сердца – это несколько взаимосвязанных структур. Начало рассматриваемой системы – это, несомненно, синусовый узел, располагающийся субэпикардиально, непосредственно, у верхушки правого предсердия. Клетки данной структуры генерируют импульс, а затем, проводят его к предсердиям.

Следующим в поводящей системе можно назвать атриовентрикулярный узел, располагающийся внизу правого предсердия, несколько замедляющий электрические импульсы возбуждения для организации правильного ритма последовательных сокращений предсердий и желудочков. Далее АВ-структура соединяется с пучком Гиса, разделенным на две ножки.

В свою очередь, ножки рассматриваемого пучка Гиса, разделяются на отдельные ветви, состоящие из клеточных структур Пуркинье. Далее ветви проводящей системы разветвляются, образуя мельчайшие, пронизывающие всю сердечную мышцу, сплетения.

Физиология сердечной мышцы сводится к образованию следующего процесса:

  • Первичное возбуждение генерируется в синусовом узле;
  • далее тканями миокарда осуществляется проводимость электрического импульса к предсердиям;
  • в предсердиях возбуждающий импульс распространяется тремя путями – трактом Бахмана, трактом Венкебаха и трактом Тореля;
  • далее возбуждение охватывает все отделы миокарда.

Проводящая система сердца

Следует понимать, что данный, кратко описанный процесс характеризуется полным автоматизмом, если же имеет место определенное нарушение проводимости импульсов в рассматриваемой системе – это ведет к последующим расстройствам ритма, иным расстройствам работы сердца, что сказывается на всех органах и системах человека.

Когда и по каким причинам возникают нарушения?

К сожалению, определенное нарушение в процессе проводимости сердца, ведущее к расстройствам ритма может возникать у любого человека, любого возраста или социального положения.

Любые изменения принятой за норму очередности или частотности сокращений сердечной мышцы возникают из-за первичных расстройств таких сердечных функций, как автоматизм, возбудимость, проводимость и/или сократительная способность.

Нарушение ритма, связанное с расстройствами системы сердечной проводимости могут возникать на фоне:


Косвенными причинами развития тех или иных расстройств сердечной проводимости, а также последующих нарушений ритмичности сокращений сердца могут быть:

  • ИБС в любых ее проявлениях.
  • Вредные привычки, прежде всего, курение, употребление алкоголя.
  • Пороки сердца, как приобретенного, так и врожденного характера.
  • Эндокринные расстройства, ожирение, сахарный диабет, иные системные заболевания.

Как предотвратить проблемы?

Понимая, что серьезные расстройства в проводящей системе сердца, нарушения сердечного ритма, могут нести вполне определенную опасность для здоровья и даже жизни пациентов о профилактике развития таких проблем следует задумываться своевременно.

При этом профилактика нарушений работы проводящей системы сердца может включать довольно широкий комплекс мероприятий, некоторые из которых осуществляются исключительно под контролем медиков.

Но, прежде всего, во избежание возникновения описанных проблем пациентам важно:

  • отказываться от любых вредных привычек;
  • правильно питаться;
  • в целом вести здоровый образ жизни – получать достаточное количество физической нагрузки, избегать стрессов, отдавать предпочтение полезным продуктам питания.

5 правил здорового сердца

Огромную роль в профилактике нарушений сердечного ритма играет адекватная диета. Формируя суточный рацион и желая избежать описанных выше сердечных расстройств, важно отдавать предпочтение питанию богатому калием, кальцием, селеном и магнием.

Список отдельных продуктов, рекомендуемых к употреблению для профилактики сердечных проблем, включает: овощи, все виды капусты, сухофрукты, фрукты, крупы. Полезны для правильной работы сердца: морская капуста, орехи, морепродукты, нежирное мясо.

Медикаментозная профилактика нарушений работы проводящей системы сердца заключается в плановом назначении пациентам: антиаритмических средств, адреноблокаторов, статинов, препаратов калия или магния. Также медики могут назначать своим пациентам для предотвращения сердечных проблем препараты ацетилсалициловой кислоты и витаминные комплексы.

При этом спешим предостеречь наших читателей – принимать любые медикаментозные препараты для профилактики сердечных расстройств без назначения врача категорически ЗАПРЕЩЕНО!

Любое самолечение может быть опасно для вашего здоровья и даже жизни.

В заключение хочется заметить, организм человека, в том числе и проводящая сердечная система – сложная саморегулирующаяся система. Чрезвычайно важно не мешать данной системе, своевременно восстанавливаться, после самых различных заболеваний. Если врач не считает нужным назначать вам препараты для профилактики сердечных проблем – однозначно, не стоит покупать и принимать любые медикаменты самостоятельно!

А чтобы болезнь, действительно, вас не побеспокоила, следует регулярно, скажем, раз в году проходить профилактические осмотры у нескольких узких специалистов, в данном случае, у кардиолога. Берегите свое здоровье, не занимайтесь самолечением и будьте счастливы!

Вконтакте

В естественных условиях клетки миокарда находятся в состоянии ритмической активности (возбуждения), поэтому об их потенциале покоя можно говорить лишь условно. У большинства клеток он составляет около 90 мВ и определяется почти целиком концентра­ционным градиентом ионов К+.

Потенциалы действия (ПД), зарегистрированные в разных от­делах сердца при помощи внутриклеточных микроэлектродов, су­щественно различаются по форме, амплитуде и длительности (рис. 7.3, А). На рис. 7.3, Б схематически показан ПД одиночной клетки миокарда желудочка. Для возникновения этого потенциала потребовалось деполяризовать мембрану на 30 мВ. В ПД различают следующие фазы: быструю начальную деполяризацию - фаза 1; медленную реполяризацию, так называемое плато - фаза 2; быст­рую реполяризацию - фаза 3; фазу покоя - фаза 4.

Фаза 1 в клетках миокарда предсердий, сердечных проводящих миоцитов (волокна Пуркинье) и миокарда желудочков имеет ту же природу, что и восходящая фаза ПД нервных и скелетных мышечных волокон - она обусловлена повышением натриевой проницаемости, т. е. активацией быстрых натриевых каналов клеточной мембраны. Во время пика ПД происходит изменение знака мембранного по­тенциала (с -90 до +30 мВ).

Деполяризация мембраны вызывает активацию медленных на­трий-кальциевых каналов. Поток ионов Са2+ внутрь клетки по этим каналам приводит к развитию плато ПД (фаза 2). В период плато натриевые каналы инактивируются и клетка переходит в состояние абсолютной рефрактерности. Одновременно происходит активация калиевых каналов. Выходящий из клетки поток ионов К+ обеспе­чивает быструю реполяризацию мембраны (фаза 3), во время ко­торой кальциевые каналы закрываются, что ускоряет процесс ре­поляризации (поскольку падает входящий кальциевый ток, деполя­ризующий мембрану).

Реполяризация мембраны вызывает постепенное закрывание ка­лиевых и реактивацию натриевых каналов. В результате возбудимость миокардиальной клетки восстанавливается - это период так называемой относительной рефрактерности.

В клетках рабочего миокарда (предсердия, желудочки) мембран­ный потенциал (в интервалах между следующими друг за другом ПД) поддерживается на более или менее постоянном уровне. Однако в клетках синусно-предсердного узла, выполняющего роль водителя ритма сердца, наблюдается спонтанная диастолическая деполяриза­ция (фаза 4), при достижении критического уровня которой (при­мерно -50 мВ) возникает новый ПД (см. рис. 7.3, Б). На этом механизме основана авторитмическая активность указанных сердеч­ных клеток. Биологическая активность этих клеток имеет и другие важные особенности: 1) малую крутизну подъема ПД; 2) медленную реполяризацию (фаза 2), плавно переходящую в фазу быстрой реполяризации (фаза 3), во время которой мембранный потенциал достигает уровня -60 мВ (вместо -90 мВ в рабочем миокарде), после чего вновь начинается фаза медленной диастолической депо­ляризации. Сходные черты имеет электрическая активность клеток предсердно-желудочкового узла, однако скорость спонтанной диасто­лической деполяризации у них значительно ниже, чем у клеток синусно-предсердного узла, соответственно ритм их потенциальной автоматической активности меньше.

Ионные механизмы генерации электрических потенциалов в клетках водителя ритма полностью не расшифрованы. Установлено, что в развитии медленной диастолической деполяризации и мед­ленной восходящей фазы ПД клеток синусно-предсердного узла ведущую роль играют кальциевые каналы. Они проницаемы не только для ионов Са2+, но и для ионов Na+. Быстрые нат­риевые каналы не принимают участия в генерации ПД этих клеток.

Скорость развития медленной диастолической деполяризации ре­гулируется автономной (вегетативной) нервной системой. В случае влияния симпатической части медиатор норадреналин активирует медленные кальциевые каналы, вследствие чего скорость диастоли­ческой деполяризации увеличивается и ритм спонтанной активности возрастает. В случае влияния парасимпатической части медиатор АХ повышает калиевую проницаемость мембраны, что замедляет развитие диастолической деполяризации или прекращает ее, а также гиперполяризует мембрану. По этой причине происходит урежение ритма или прекращение автоматии.

Способность клеток миокарда в течение жизни человека нахо­диться в состоянии непрерывной ритмической активности обеспе­чивается эффективной работой ионных насосов этих клеток. В период диастолы из клетки выводятся ионы Na+, а в клетку возвращаются ионы К+. Ионы Са2+, проникшие в цитоплазму, поглощаются эндоплазматической сетью. Ухудшение кровоснабжения миокарда (ишемия) ведет к обеднению запасов АТФ и креатинфосфата в миокардиальных клетках; работа насосов нарушается, вследствие чего уменьшается электрическая и механическая активность мио­кардиальных клеток.

Функции проводящей системы сердца

Спонтанная генерация ритмических импульсов является резуль­татом слаженной деятельности многих клеток синусно-предсердного узла, которая обеспечивается тесными контактами (нексусы) и электротоническим взаимодействием этих клеток. Возникнув в синусно-предсердном узле, возбуждение распространяется по проводящей системе на сократительный миокард.

Особенностью проводящей системы сердца является способность каждой клетки самостоятельно генерировать возбуждение. Сущест­вует так называемый градиент автоматии, выражающийся в убывающей способности к автоматии различных участков прово­дящей системы по мере их удаления от синусно-предсердного узла, генерирующего импульса с частотой до 60-80 в минуту.

В обычных условиях автоматия всех нижерасположенных уча­стков проводящей системы подавляется более частыми импульсами, поступающими из синусно-предсердного узла. В случае поражения и выхода из строя этого узла водителем ритма может стать предсердно-желудочковый узел. Импульсы при этом будут возникать с частотой 40-50 в минуту. Если окажется выключенным и этот узел, водителем ритма могут стать волокна предсердно-желудочкового пучка (пучок Гиса). Частота сердечных сокращений в этом случае не превысит 30-40 в минуту. Если выйдут из строя и эти водители ритма, то процесс возбуждения спонтанно может возник­нуть в клетках волокон Пуркинье. Ритм сердца при этом будет очень редким - примерно 20 в минуту.

Отличительной особенностью проводящей системы сердца явля­ется наличие в ее клетках большого количества межклеточных контактов - нексусов. Эти контакты являются местом перехода возбуждения с одной клетки на другую. Такие же контакты имеются и между клетками проводящей системы и рабочего миокарда. Бла­годаря наличию контактов миокард, состоящий из отдельных клеток, работает как единой целое. Существование большого количества межклеточных контактов увеличивает надежность проведения воз­буждения в миокарде.

Возникнув в синусно-предсердном узле, возбуждение распрост­раняется по предсердиям, достигая предсердно-желудочкового (атриовентрикулярного) узла. В сердце теплокровных животных суще­ствуют специальные проводящие пути между синусно-предсердным и предсердно-желудочковым узлами, а также между правым и левым предсердиями. Скорость распространения возбуждения в этих про­водящих путях ненамного превосходит скорость распространения возбуждения по рабочему миокарду. В предсердно-желудочковом узле благодаря небольшой толщине его мышечных волокон и особому способу их соединения возникает некоторая задержка проведения возбуждения. Вследствие задержки возбуждение доходит до пред­сердно-желудочкового пучка и сердечных проводящих миоцитов (волокна Пуркинье) лишь после того, как мускулатура предсердий успевает сократиться и перекачать кровь из предсердий в желудочки.

Следовательно, атриовентрикулярная задержка обеспечивает необ­ходимую последовательность (координацию) сокращений предсердий и желудочков.

Скорость распространения возбуждения в предсердно-желудочковом пучке и в диффузно расположенных сердечных проводящих миоцитах достигает 4,5-5 м/с, что в 5 раз больше скорости рас­пространения возбуждения по рабочему миокарду. Благодаря этому клетки миокарда желудочков вовлекаются в сокращение почти од­новременно, т. е. синхронно (см. рис. 7.2). Синхронность сокращения клеток повышает мощность миокарда и эффективность нагнетатель­ной функции желудочков. Если бы возбуждение проводилось не через предсердно-желудочковый пучок, а по клеткам рабочего мио­карда, т. е. диффузно, то период асинхронного сокращения продол­жался бы значительно дольше, клетки миокарда вовлекались в сокращение не одновременно, а постепенно и желудочки потеряли бы до 50% своей мощности.

Таким образом, наличие проводящей системы обеспечивает ряд важных физиологических особенностей сердца: 1) ритмическую ге­нерацию импульсов (потенциалов действия); 2) необходимую по­следовательность (координацию) сокращений предсердий и желу­дочков; 3) синхронное вовлечение в процесс сокращения клеток миокарда желудочков (что увеличивает эффективность систолы).

ФИЗИОЛОГИЯ СЕРДЦА

Самой главной функцией сердца является насосная . т. е. способность сердца непрерывно перекачивать кровь из вен в артерии, из большого круга кровообращения в малый. Цель этого насоса – доставлять кровь, несущую кислород и питательные вещества, ко всем органам и тканям, чтобы обеспечить их жизнедеятельность, забрать вредные продукты жизнедеятельности и донести их к обезвреживающим органам.

Сердце – это своеобразный вечный двигатель. В этом и последующих выпусках по физиологии сердца будут описаны сложнейшие механизмы, за счёт которых оно функционирует.

Выделяют 4 основные свойства сердечной ткани:

  • Возбудимость – способность отвечать на действия раздражителей возбуждением в виде электрических импульсов.
  • Автоматизм – способность самовозбуждаться, т. е. генерировать электрические импульсы в отсутствие внешних раздражителей.
  • Проводимость – способность проводить возбуждение от клетки к клетке без затухания.
  • Сократимость – способность мышечных волокон укорачиваться или увеличивать своё напряжение.

Средняя оболочка сердца – миокард – состоит из клеток, которые называются кардиомиоцитами. Кардиомиоциты не все одинаковы по своей структуре и выполняют различные функции. Выделяют следующие разновидности кардиомиоцитов:

  • Сократительные (рабочие, типичные) кардиомиоциты составляют 99 % массы миокарда и обеспечивают непосредственно сократительную функцию сердца.
  • Проводящие (атипичные, специализированные) кардиомиоциты . которые формируют проводящую систему сердца. Среди проводящих кардиомиоцитов различают 2 вида клеток – Р-клетки и клетки Пуркинье. Р-клетки (от англ. рale – бледный) обладают способностью периодически генерировать электрические импульсы, чем и обеспечивают функцию автоматизма. Клетки Пуркинье обеспечивают проведение импульсов ко всем отделам миокарда и имеют слабую способность к автоматизму.
  • Переходные кардиомиоциты или Т-клетки (от англ. transitional — переходный) расположены между проводящими и сократительными кардиомиоцитами и обеспечивают их взаимодействие (т. е. передачу импульса от проводящих клеток к сократительным).
  • Секреторные кардиомиоциты расположены преимущественно в предсердиях. Они выделяют в просвет предсердий натрийуретический пептид – гормон, регулирующий водно-электролитный баланс в организме и артериальное давление.

Все типы клеток миокарда не обладают способностью к делению, т. е. не способны к регенерации. Если у человека повышается нагрузка на сердце (например, у спортсменов), увеличение мышечной массы происходит за счёт увеличения объёма отдельных кардиомиоцитов (гипертрофии), а не их общего количества (гиперплазии).

Теперь рассмотрим подробнее строение проводящей системы сердца (рис. 1). Она включает в себя следующие основные структуры:

  • Синоатриальный (от латинского sinus – пазуха, atrium – предсердие), или синусовый , узел расположен на задней стенке правого предсердия около устья верхней полой вены. Он образован P-клетками, которые посредством Т-клеток связаны между собой и с сократительными кардиомиоцитами предсердий. От синоатриального узла в направлении к атриовентрикулярному узлу отходят 3 межузловых пучка: передний (пучок Бахмана), средний (пучок Венкебаха) и задний (пучок Тореля).
  • Атриовентрикулярный (от лат. аtrium – предсердие, ventriculum – желудочек) узел – расположен в зоне перехода от предсердных кардиомиоцитов к пучку Гиса. Содержит Р-клетки, но в меньшем количестве, чем в синусовом узле, клетки Пуркинье, Т-клетки.
  • Предсердно-желудочковый пучок, или пучок Гиса (описан немецким анатомом В. Гисом в 1893 г.) в норме является единственным путём проведения возбуждения от предсердий к желудочкам. Он отходит от атриовентрикулярного узла общим стволом и проникает в межжелудочковую перегородку. Здесь пучок Гиса делится на 2 ножки – правую и левую, идущие к соответствующим желудочкам. Левая ножка делится на 2 ветви – передневерхнюю и задненижнюю. Ветви пучка Гиса заканчиваются в желудочках сетью мелких волокон Пуркинье (описаны чешским физиологом Я. Пуркинье в 1845 г.).

1. Синусовый узел. 2. Атриовентрикулярный узел. 3. Ножки пучка Гиса. 4. Волокна Пуркинье.

У некоторых людей встречаются дополнительные (аномальные) проводящие пути (пучок Джеймса, пучок Кента), которые участвуют в возникновении нарушений сердечного ритма (например, синдрома преждевременного возбуждения желудочков).

В норме возбуждение зарождается в синусном узле, переходит на миокард предсердий, и, пройдя атриовентрикулярный узел, распространяется по ножкам пучка Гиса и волокнам Пуркинье на миокард желудочков.

Таким образом, нормальный ритм сердца определяется активностью синоатриального узла, который называют водителем ритма первого порядка, или истинным пейсмекером (от англ. pacemaker – «отбивающий шаг»). Автоматизм присущ также другим структурам проводящей системы сердца. Водитель второго порядка локализован в атриовентрикулярном узле. Водителями третьего порядка являются клетки Пуркинье, входящие в состав проводящей системы желудочков.

Продолжение следует.

Проводящая система сердца. Синусовый узел

На рисунке показана схема проводящей системы сердца . В ее состав входят: (1) синусный узел (который также называют синоатриальным или С-А узлом), где и происходит ритмическая генерация импульсов; (2) предсердные межузловые пучки, по которым импульсы проводятся от синусного узла к агриовентрикулярному узлу; (3) атриовентрикулярный узел, в котором происходит задержка проведения импульсов от предсердий к желудочкам; (4) атриовентрикулярный пучок, по которому импульсы проводятся к желудочкам; (5) левая и правая ножки А-В пучка, состоящие из волокон Пуркинье, благодаря которым импульсы достигают сократительного миокарда.

Синусный (синоатриальный) узел представляет собой небольшую эллипсовидную пластинку шириной 3 мм, длиной 15 мм и толщиной 1 мм, состоящую из атипических кардиомноцитов. С-А узел расположен в верхней части заднебоковой стенки правого предсердия у места впадения в него верхней полой вены. Клетки, входящие в состав С-А узла, практически не содержат сократительных филаментов; их диаметр всего лишь 3-5 мкм (в отличие от предсердных сократительных волокон, диаметр которых 10-15 мкм). Клетки синусного узла непосредственно связаны с сократительными мышечными волокнами, поэтому потенциал действия, возникший в синусном узле, немедленно распространяется на миокард предсердий.

Автоматия - это способность некоторых сердечных волокон самостоятельно возбуждаться и вызывать ритмические сокращения сердца. Способностью к автоматии обладают клетки проводящей системы сердца, в том числе клетки синусного узла. Именно С-А узел контролирует ритм сердечных сокращений, как мы увидим далее. А сейчас обсудим механизм автоматии.

Механизм автоматии синусного узла . На рисунке представлены потенциалы действия клетки синусного узла, записанные на протяжении трех сердечных циклов, и для сравнения - одиночный потенциал действия кардиомиоцита желудочка. Необходимо отметить, что потенциал покоя клетки синусного узла имеет меньшую величину (от -55 до -60 мВ) в отличие от типичного кардиомиоцита (от -85 до -90 мВ). Это различие объясняется тем, что мембрана узловой клетки в большей степени проницаема для ионов натрия и кальция. Вход этих катионов в клетку нейтрализует часть внутриклеточных отрицательных зарядов и уменьшает величину потенциала покоя.

Прежде чем перейти к механизму автоматии . необходимо вспомнить, что в мембране кардиомиоцитов существуют три типа ионных каналов, которые играют важную роль в генерации потенциала действия: (1) быстрые натриевые каналы, (2) медленные Na+/Са2+-каналы, (3) калиевые каналы. В клетках миокарда желудочков кратковременное открытие быстрых натриевых каналов (на несколько десятитысячных долей секунды) и вход ионов натрия в клетку приводит к быстрой деполяризации и перезарядке мембраны кардиомиоцита. Фаза плато потенциала действия, которая продолжается 0,3 сек, формируется за счет открытия медленных Na+/Ca -каналов. Затем открываются калиевые каналы, происходит диффузия ионов калия из клетки - и мембранный потенциал возвращается к исходному уровню.

В клетках синусного узла потенциал покоя меньше, чем в клетках сократительного миокарда (-55 мВ вместо -90 мВ). В этих условиях ионные каналы функционируют по-другому. Быстрые натриевые каналы инактивированы и не могут участвовать в генерации импульса. Дело в том, что любое уменьшение мембранного потенциала до -55 мВ на срок больший, чем несколько миллисекунд, приводит к закрытию инактивационных ворот во внутренней части быстрых натриевых каналов. Большая часть этих каналов оказывается полностью блокирована. В этих условиях могут открыться только медленные Na+/Ca -каналы, и поэтому именно их активация становится причиной возникновения потенциала действия. Кроме того, активация медленных Na/Ca -каналов обусловливает сравнительно медленное развитие процессов деполяризации и реполяризации в клетках синусного узла в отличие от волокон сократительного миокарда желудочков.


Проводящая система сердца состоит из синусно-предсердного узла, предсердно-желудочкового узла, предсердно-желудочкового пучка, его ножек и разветвлений проводящих волокон. Проводящая система передает ритмичные нервные импульсы, которые генерируются специализированными клетками синусно-предсердного узла (основной водитель ритма сердца). Синусно-предсердный узел располагается под эпикардом правого предсердия, между местом впадения верхней полой вены и ушком правого предсердия. От него импульсы распространяются по кардиомиоцитам предсердий и на предсердно-желудочковый узел, лежащий в толще нижнего отдела межпредсердной перегородки. От предсердно-желудочкового узла отходит короткий предсердно-желудочковый пучок, который в верхней части межжелудочковой перегородки разделятся на две ножки: правую и левую. Ножки пучка разветвляются под эндокардом в толще миокарда желудочка на тонкие пучки проводящих мышечных волокон, заканчивающихся непосредственно на кардиомиоцитах желудочков.

Функции проводящей системы сердца

Спонтанная генерация ритмических импульсов является результатом слаженной деятельности многих клеток синусно-предсердного узла, которая обеспечивается тесными контактами (нексусы) и электротоническим взаимодействием этих клеток. Возникнув в синусно-предсердном узле, возбуждение распространяется по проводящей системе на сократительный миокард.

Особенностью проводящей системы сердца является способность каждой клетки самостоятельно генерировать возбуждение. Существует так называемый градиент автоматии, выражающийся в убывающей способности к автоматии различных участков проводящей системы по мере их удаления от синусно-предсердного узла, генерирующего импульса с частотой до 60-80 в минуту.

В обычных условиях автоматия всех нижерасположенных участков проводящей системы подавляется более частыми импульсами, поступающими из синусно-предсердного узла. В случае поражения и выхода из строя этого узла водителем ритма может стать предсердно-желудочковый узел. Импульсы при этом будут возникать с частотой 40-50 в минуту. Если окажется выключенным и этот узел, водителем ритма могут стать волокна предсердно-желудочкового пучка (пучок Гиса). Частота сердечных сокращений в этом случае не превысит 30-40 в минуту. Если выйдут из строя и эти водители ритма, то процесс возбуждения спонтанно может возникнуть в клетках волокон Пуркинье. Ритм сердца при этом будет очень редким - примерно 20 в минуту.

Отличительной особенностью проводящей системы сердца является наличие в ее клетках большого количества межклеточных контактов - нексусов. Эти контакты являются местом перехода возбуждения с одной клетки на другую. Такие же контакты имеются и между клетками проводящей системы и рабочего миокарда. Благодаря наличию контактов миокард, состоящий из отдельных клеток, работает как единой целое. Существование большого количества межклеточных контактов увеличивает надежность проведения возбуждения в миокарде.

Возникнув в синусно-предсердном узле, возбуждение распространяется по предсердиям, достигая предсердно-желудочкового (атриовентрикулярного) узла. В сердце теплокровных животных существуют специальные проводящие пути между синусно-предсердным и предсердно-желудочковым узлами, а также между правым и левым предсердиями. Скорость распространения возбуждения в этих проводящих путях ненамного превосходит скорость распространения возбуждения по рабочему миокарду. В предсердно-желудочковом узле благодаря небольшой толщине его мышечных волокон и особому способу их соединения возникает некоторая задержка проведения возбуждения. Вследствие задержки возбуждение доходит до предсердно-желудочкового пучка и сердечных проводящих миоцитов (волокна Пуркинье) лишь после того, как мускулатура предсердий успевает сократиться и перекачать кровь из предсердий в желудочки.

Следовательно, атриовентрикулярная задержка обеспечивает необходимую последовательность (координацию) сокращений предсердий и желудочков.

Скорость распространения возбуждения в предсердно-желудочковом пучке и в диффузно расположенных сердечных проводящих миоцитах достигает 4,5-5 м/с, что в 5 раз больше скорости распространения возбуждения по рабочему миокарду. Благодаря этому клетки миокарда желудочков вовлекаются в сокращение почти одновременно, т.е. синхронно. Синхронность сокращения клеток повышает мощность миокарда и эффективность нагнетательной функции желудочков. Если бы возбуждение проводилось не через предсердно-желудочковый пучок, а по клеткам рабочего миокарда, т.е. диффузно, то период асинхронного сокращения продолжался бы значительно дольше, клетки миокарда вовлекались в сокращение не одновременно, а постепенно и желудочки потеряли бы до 50% своей мощности.

Таким образом, наличие проводящей системы обеспечивает ряд важных физиологических особенностей сердца:

1) ритмическую генерацию импульсов (потенциалов действия);

2) необходимую последовательность (координацию) сокращений предсердий и желудочков;

3) синхронное вовлечение в процесс сокращения клеток миокарда желудочков (что увеличивает эффективность систолы).