Эпихлоргидрин токсическое действие на организм. Изменения высоты эпителия слизистой оболочки пилорического отдела желудка крыс под действием эпихлоргидрина и их коррекция. Список использованной литературы


Введение

3. Способы получения

Заключение

Введение


В последние годы наблюдается тенденция к расширению использования глицерина и его производных в медицине и во многих приоритетных отраслях науки и техники. По-видимому, этим следует объяснить повышенный интерес ряда известных научных школ и промышленных предприятий к проблеме разработки новых высокотехнологичных и экономичных методов синтеза и расширения масштабов потребления глицерина.

Увеличение спроса на глицерин на мировом рынке вызывает необходимость строительства новых цехов по производству этого продукта и реконструкции и модернизации установок действующих производств в направлении повышения их производительности.

Производство синтетического глицерина из пропилена хлорным методом на Стерлитамакском химическом заводе осуществлено по современной технологии и ныне имеет самые лучшие технико-экономические показатели среди известных технологических приемов. Поэтому Стерлитамакская технология производства глицерина в ряде случаев может выступить эталоном сравнения при разработке новых методов получения глицерина.

Эпихлоргидрин является основным сырьем для получения синтетического глицерина и большая часть производимого эпихлоргидрина расходуется для этих целей.

Другое очень важное и постоянно развивающееся направление использования эпихлоргидрина - производство эпоксидных смол. Особенно важное значение приобретают эпоксидные смолы в химической промышленности вследствие их высокой коррозионной стойкости.

Эпихлоргидрин является также основным сырьем для получения ряда ионообменных смол.

эпихлоргидрин синтетический глицерин химия

В небольших количествах эпихлоргидрин применяется в качестве стабилизатора для некоторых хлорорганических соединений. Перспективным направлением использования эпихлоргидрина является получение эпихлоргидриновых каучуков, обладающих более высокой термо - и маслостойкостью, сопротивлением действию озона, более высокой газонепроницаемостью по сравнению с другими синтетическими каучуками.

Актуальность работы . Эпихлоргидрин (ЭХГ) является важным продуктом основного органического синтеза. Обладая высокой реакционной способностью, обусловленной наличием в молекуле подвижного атома хлора и эпоксидной группы, эпихлоргидрин находит широкое применение. Он легко вступает во взаимодействие с соединениями различных классов, что позволяет получать на его основе ряд продуктов, используемых во многих отраслях промышленности (эпоксидные смолы, лаки, клеи, синтетические волокна, ионообменные смолы, каучуки и др.).

Традиционный "хлоргидринный" метод получения эпихлоргидрина, широко применяемый в промышленности, имеет ряд существенных недостатков, к числу которых можно отнести невысокий коэффициент использования хлора, образование значительных количеств загрязненных сточных вод (40-60 м3/т продукта), очистка которых трудоемка и требует больших затрат. Жесткие требования экологического и экономического характера диктуют настоятельную необходимость создания новых технологий получения эпихлоргидрина, которые могли бы заменить устаревшие процессы.

Одним из перспективных направлений решения этой проблемы является разработка технологии синтеза эпихлоргидрина, основанной на жидкофазном эпоксидировании аллилхлорида (АХ) водным раствором пероксида водорода (ПВ) в присутствии гетерогенного катализатора. Применение данного способа позволяет устранить недостатки присущие традиционному методу и в значительной степени повысить экологичность процесса получения эпихлоргидрина. Учитывая постоянно возрастающий спрос на эпихлоргидрин и продукты на его основе, разработка новой технологии его производства является актуальной и своевременной задачей.

Цель работы заключается в разработке теоретических основ технологии промышленного способа получения эпихлоргидрина эпоксидированием аллилхлорида пероксидом водорода в присутствии гетерогенного катализатора. Для достижения указанной цели были поставлены и решены следующие задачи:

разработка эффективного гетерогенного катализатора жидкофазного эпоксидирования аллилхлорида водным раствором пероксида водорода;

изучение влияния технологических параметров на процесс получения эпихлоргидрина и выбор условий осуществления стадии эпоксидирования;

определение кинетических закономерностей эпоксидирования аллилхлорида пероксидом водорода;

исследование фазовых равновесий жидкость-пар в системах продуктов синтеза эпихлоргидрина и разработка эффективной схемы разделения реакционной массы с получением эпихлоргидрина требуемой чистоты;

разработка принципиальной технологической схемы процесса получения эпихлоргидрина.

Научная новизна . Впервые разработан гранулированный катализатор жидко-фазного эпоксидирования аллилхлорида водным раствором пероксида водорода, оптимизирован его состав и способ получения.

Установлены количественные закономерности процесса эпоксидирования аллилхлорида и найдены оптимальные условия получения эпихлоргидрина. Впервые изучена кинетика эпоксидирования и разработана адекватная математическая модель взаимодействия аллилхлорида с водным раствором пероксида водорода в присутствии гранулированного катализатора.

Проведено комплексное изучение фазовых равновесий в системах, образованных компонентами реакционной смеси, и для ряда систем получены неизвестные ранее данные, необходимые для математического моделирования фазовых равновесий жидкость-пар в многокомпонентных смесях.

Практическая значимость . Предложен эффективный гранулированный катализатор процесса эпоксидирования аллилхлорида на основе титансодержащего цеолита для работы в стационарном слое. Разработаны научные основы технологии гетерогенно-каталитического синтеза эпихлоргидрина эпоксидированием аллилхлорида водным раствором пероксида водорода, включая стадию разделения продуктов реакции. Предложена принципиальная технологическая схема синтеза и выделения эпихлоргидрина. Выданы исходные данные на проектирование опытно-промышленной установки получения эпихлоргидрина мощностью 5 тонн в год.

Характеристика эпихлоргидрина Эпихлоргидрин технический должен соответствовать требованиям ГОСТ 12844-74 с изменениями №№ 1,2,3,4.


Таблица 1

Наименование показателяНорма Высший сортПервый сорт 12341. Внешний вид Бесцветная прозрачная жидкость2. Плотность при 20°С и давлении 760 мм рт. ст., г/см³ 1,179-1,1811,179-1,1813. Массовая доля эпихлоргидрина, %, не менее 99,599,04. Суммарная массовая доля хлорорганических примесей, %, не более0,4не нормируетсяв том числе: непредельных соединений, %, не более 0,3не нормируется5. Массовая доля воды, %, не более 0,10,15

1. Основные физико-химические свойства и константы


Эпихлоргидрин - бесцветная прозрачная ядовитая жидкость с неприятным запахом.


Эмпирическая формула С3Н5СlО

Структурная формула Н2С - СН - СН2 - Сl



Молекулярная масса92,53Динамическая вязкость при 20°С1,12 МПа·с Температура кипения116,11°СТемпература плавленияминус 57°СТеплопроводность при 20°С0,142 Вт/м?К, (0,122 кКал/м·ч·°С)Теплота сгорания1771 кДж/моль (423 кКал/моль)Диэлектрическая проницаемость жидкости при 21,5°С20,8Теплоемкость при 20°С1,528 кДж/кг·К (0,365 кКал/кг·°С)Теплота сгорания при 20°С487,4 кДж/кг (116,4 кКал/кг)Коэффициент преломления п20Д1,4381Электропроводность при 25°С3,4·10-8 Ом-1·см-1

Эпихлоргидрин хорошо растворяется в спиртах и кетонах, в простых и сложных эфирах, в ароматических и хлорированных углеводородах.


Растворимость

Температура,°С01020304050607080Растворимость эпихлоргидрина в воде, %6,476,516,556,606,857,358,039,0210,38Растворимость воды в эпихлоргидрине, %1,121,221,421,692,082,593,234,175,70

Эпихлоргидрин с водой образует азеотропную смесь состава 75% эпихлоргидрина и 25% воды, кипящую при температуре 88°С. При расслоении азеотропной смеси (при 20°С) в верхнем водном слое, занимающем 30%, содержится 5,99% эпихлоргидрина, в нижнем 98,8%.


Давление паров эпихлоргидрина

Температура,°СДавление паров кПа мм рт. ст. 00,484201,7313405, 2039508,40636013, 20998029,592229042,6632010060,6545511083,98630

Эпихлоргидрин легко присоединяет НС1 при обычной температуре, образуя 1,3-дихлоргидрин глицерина <#"center">2. Характеристика исходного сырья, материалов, полупродуктов


Наименование сырья, материалов, полупродуктов, энергоресурсовГосударственный или отраслевой стандарт, технические условия, СТП, регламент или методика на подготовку сырьяПоказатели, обязательные для проверкиРегламентируемые показатели12341. ПропиленГОСТ 25043-87 изм.1 1 сорт Объемная доля пропилена. %, не менее Объемная доля этана и пропана, %, не более Объемная доля этана, %, не более99,0 0,7 0,01 2. Хлор испаренный Регламент цехов №№ 2, 123. Хлор абгазный Регламент цехов №№ 2, 4Объемная доля хлора, %, не менее 654. Пропиленовая фракцияТУ 38.10276-87 с изм.1-3 Объемная доля пропилена. %, не менее 90,05. ЭлектрощелокаРегламент цеха № 2Массовая концентрация едкого натра, г/дм³ 115-1406. Водород техническийРегламент цеха № 27. Водный раствор едкого натра Регламент цехов №№ 2, 4 8. Цеолиты общего назначения, формованные со связующим. Марка NаХТУ 38.10281-88 с изм.1-412349. Вода умягченная СТП 00203312-57-0210. Вода оборотная СТП 00203312-57-0211. ПарСТП 00203312-57-0212. ЭлектроэнергияСТП 00203312-57-0213. Холод параметра +5°СРегламент цеха № 3914. Холод параметра минус 18°СРегламент цеха № 3915. Воздух осушенный для КИПиА Регламент цеха № 3016. Азот 1,2 МПа Регламент цеха № 3017. Азот 0,8 МПаРегламент цеха № 30 18. Воздух технический Регламент цеха № 3019. Природный газ СТП 00203312-57-0220. Абгазный хлорПо регламенту цеха № 18 21. Ингибитор коррозии для соляной кислотыРегламент цеха № 23 123422. Абгазы из цеха № 18 Регламент цеха № 18 23. Уголь активный рекуперационный марка АР-ВГОСТ 8703-74 с изм.1-424. Полотно нетканое объемное фильтровальное "Сипрон" или "Вазапрон"ТУ 17-14180-82 ТУ РСФСР-19-7672-9025. Бочки стальные сварные толстостенные для химических продуктов тип БСТ 1-1, 110-2ГОСТ 17366-80 с изм.1, 2

3. Способы получения


3.1 Получение эпихлоргидрина отделением хлористого аллила


Технологический процесс получения эпихлоргидрина состоит из следующих узлов:

отделение хлористого аллила:

приём и распределение испаренного и абгазного хлора;

хлорирование пропилена;

абсорбция хлористого водорода;

компремирование, конденсация и осушка пропилена;

ректификация хлористого аллила;

сжигание пропиленовых сдувок на факеле поз. W-788;

нейтрализация хлорсодержащих сдувок, сточных вод и распределение абгазной соляной кислоты;

отделение эпихлоргидрина: гипохлорирование хлористого аллила; экстракция; дегидрохлорирование дихлоргидринов глицерина; ректификация эпихлоргидрина.

Газофазное заместительное хлорирование пропилена при давлении (0,15-0,18) МПа (1,5-1,8) кгс/см² и температуре (490-525)°С, молярном соотношении пропилена и хлора от 3: 1 до 5: 1 идет с преимущественным образованием хлористого аллила. Большой избыток пропилена обеспечивает полное вхождение в реакцию хлора и подержание температуры реакции в требуемых пределах. Основная реакция хлорирования пропилена:


СН2 = СН - СН3 + Сl2® СН2 = СН - СН2Cl + НСl + 112,21 кДж


Одновременно происходят побочные реакции:


СIНС = СН - СН3 (1-хлорпропен) + НСI

СН2 = СН - СН3 + Сl2

Н2С = ССl - СН3 (2-хлорпропен) + НСI

СIСН2 - СН2 - СН3 (1-хлорпропан)

СН2 = СН - СН3 + НСl

СН3 - СНСl - СН3 (2-хлорпропан)

СН2 = СН - СН3 + Сl2 СlН2С - СНСl - СН3 (1,2-дихлорпропан)

СlНС = ССl - СН3 (1,2-дихлорпропен) + 2НСI

СН2 = СН - СН3 + 2Сl2

СlНС = СН - СН2СI (1,3-дихлорпропен) + 2НСI


Также происходят реакции заместительного хлорирования уже образовавшихся продуктов и примесей пропилена, термического дегидрохлорирования, пиролиза и конденсации.

Для снижения протекания побочных и вторичных реакций продукты хлорирования подвергаются закалке дихлорпропаном с доведением температуры до (90-110)°С.

Образовавшийся в ходе реакции хлористый водород улавливается из циркулирующего избыточного пропилена умягченной водой.

Хлористый аллил-сырец с массовой долей основного вещества (50-80) % путем ректификации доводится до хлористого аллила-ректификата с массовой долей не менее 97,2%.

Хлористый аллил подвергается гипохлорированию хлорноватистой кислотой с получением раствора дихлоргидринов глицерина.

Дегидрохлорированием водного раствора дихлоргидринов глицерина электрощелоками или раствором едкого натра получают эпихлоргидрин-сырец, который путем ректификации доводится до товарного эпихлоргидрина с массовой долей основного вещества не менее 99,0%.

Эпихлоргидрин направляется на производство синтетического глицерина, выводится в цех № 40.

Отходы производства хлористого аллила и эпихлоргидрина:

дихлорпропановая фракция, монохлорпропеновая фракция используются в производстве перхлоруглеродов в качестве сырья;

избыток дихлорпропановой фракции и монохлорпропеновой фракции подвергаются термическому обезвреживанию;

кислота соляная абгазная реализуется в качестве товарной продукции, используется в производстве хлористого кальция, в получении кислоты соляной ингибированной, производстве хлорвинила;

легкая фракция ректификации эпихлоргидрина подвергается термическому обезвреживанию;

трихлорпропановая фракция реализуется в качестве сырья в производстве перхлоруглеродов или подвергается термическому обезвреживанию.


3.2 Получение эпихлоргидрина гидрохлорированием глицерина и щелочным дегидрохлорированием дихлоргидринов глицерина

4. Охрана окружающей среды и меры безопасности при производстве


Выбросы в атмосферу Газообразные сдувки со всего технологического процесса представляют собой отдувки от различных аппаратов, продувочный азот и инерты, увлекающие за собой пары органических продуктов.

Для уменьшения уноса и потерь органических продуктов все газообразные выбросы направляются в концевые конденсаторы, размещенные в соответствующих отделениях производства.

Основные опасности производства.

В производстве эпихлоргидрина применяются и получаются ядовитые, агрессивные и пожаро-взрывоопасные продукты, способные вызвать отравления, ожоги, взрывы и загорания.

Основные опасности производства вызваны следующими факторами:

наличием хлора и хлористого водорода, паров хлористого аллила, дихлорпропана, трихлорпропана, монохлорпропенов, эпихлоргидрина, 1,3 - и 2,3-дихлоргидринов глицерина, хлороформа, четыреххлористого углерода, пропилена, 1,3 - и 2,3-дихлорпропенов, могущих вызвать отравление обслуживающего персонала; отравление возможно и перечисленными жидкими хлоруглеводородами;

наличием жидких и газообразных пропилена и хлоруглеводородов: хлористого аллила, 1,2-дихлорпропана, 1,3-дихлорпропена, 2,3-дихлорпропена, 1,2,3-трихлорпропана, 1,3 - и 2,3-дихлоргидрина глицерина, 2-монохлорпропена, 2-хлорпропана, 1-монохлорпропена, хлороформа, определяющих опасность взрывов и загораний в производственных помещениях при применении открытого огня, искрообразования или нарушения защиты от статического электричества;

наличием агрессивных химических продуктов (соляной кислоты, водный раствор хлорноватистой кислоты, водный раствор едкого натра), которые могут вызвать химические ожоги при попадании на кожу или в глаза;

наличием пара и конденсата высоких температур, нагретых поверхностей оборудования и трубопроводов, холода параметра минус 18°С, охлажденных до температуры минус 35°С поверхностей оборудования и трубопроводов, которые могут вызвать термические ожоги и обморожения.

Основными опасностями, связанными с особенностями технологического процесса или выполнения отдельных производственных операций, являются:

ведение процесса подогрева пропилена в подогревателях пропилена при температуре дымовых газов более 765°С может привести к отложению продуктов крекинга пропилена на стенках теплообменного оборудования и, как следствие этого, забивку системы коксом и прогар теплообменного оборудования. Во избежание получения термических ожогов печи подогрева пропилена поз. R-188 АВ выполнены в теплоизолированном исполнении. Печи подогрева пропилена поз. R-188 АВ (наружная установка) должны иметь защитное ограждение для предотвращения прохода посторонних лиц;

процесс хлорирования пропилена характеризуется наличием параметров, непосредственно влияющих на безопасность процесса. Нарушение данных параметров (давление испаренного хлора, давление пропилена, расход хлора, расход пропилена и температура пропилена перед смесителями поз. R-183 А1А2В1В2, температура реакционных газов перед колонной закалки поз. R-184 АВ, расход циркулирующего дихлорпропана в колонну закалки поз. R-184 АВ, температура реакционных газов после конденсаторов поз. R-134, перепад давления в системе хлорирования пропилена может привести к разгерметизации оборудования, прогару стенок трубопроводов, смесителей поз. R-183, забивке трубопроводов и загазованности производственного помещения токсичными и пожаро-, взрывоопасными продуктами;

сбор кокса и твердых хлорорганических продуктов при чистке смесителей поз. R-183, фильтров поз. R-112 и трубопроводов реакционных газов между смесителями и до колонны закалки производится в открытую тару (контейнер). Неправильное выполнение правил сбора кокса и твердых хлорорганических продуктов может привести к загазованности производственного помещения токсичными продуктами;

процесс гипохлорирования хлористого аллила хлорноватистой кислотой характеризуется наличием параметров, влияющих непосредственно на безопасность процесса. Нарушение данных параметров (давление и расход хлора, расход щелочного агента в скруббер поз. Н-181, расход пара в коллектор хлора) может привести к загоранию титановых трубопроводов и оборудования, загазованности производственного помещения хлором.

Основными опасностями, обусловленными особенностями используемого оборудования и условиями его эксплуатации, являются:

применение электрического тока опасного напряжения;

наличие движущихся частей машин и механизмов, что может привести к травмированию при нарушении правил, и возможностью разрывов аппаратов и коммуникаций при нарушении правил эксплуатации;

необходимостью подготовки в ремонт и производство ремонтных работ оборудования и коммуникаций без остановки технологического процесса, что при нарушении соответствующих правил и инструкций может привести к выходу из строя оборудования и коммуникаций, а также к несчастным случаям, отравлениям, пожарам или взрывам;

необходимостью перехода на резервное оборудование без остановки технологического процесса, что при нарушении правил может привести к выходу из строя аппаратов и коммуникаций с последующей загазованностью.

Основные опасности производства, обусловленные нарушениями правил безопасности работающими, сводятся к следующему:

неприменению средств индивидуальной защиты;

нарушению норм технологического процесса;

нарушению норм и правил по охране труда.

Требования безопасности при пуске и остановке технологических систем и отдельных видов оборудования.

После окончания ремонтных работ, включающих ремонт оборудования, аппаратуры, трубопроводов, запорной арматуры, установки предохранительных устройств, манометров, снятия заглушек, производится осмотр всего оборудования. При этом проверяются:

правильность установки оборудования, трубопроводов, арматуры;

состояние канализационной сети, дренажных систем, вентиляции;

наличие и состояние заземляющих устройств у аппаратов, электродвигателей и другого электротехнического оборудования;

наличие и состояние первичных средств пожаротушения и системы ППА, сигнализации, связи, аварийных комплектов защиты и инструмента;

качество проведенного в аппаратах ремонта, правильность монтажа внутренних устройств перед их закрытием;

(обращается внимание на то, чтобы в аппаратах не осталось посторонних предметов);

у футерованных аппаратов целостность защитного покрытия;

у котлонадзорных аппаратов - наличие всех шпилек на крышках, люках, фланцевых соединениях, наличие манометров, предохранительных устройств, бирок с указанием очередного освидетельствования;

аппараты, системы и отдельные узлы на герметичность;

Производится тщательная уборка производственных помещений и территории цеха от строительного мусора и посторонних предметов.

После того, как оборудование готово к пуску, составляется акт на прием оборудования из ремонта.

К акту приема оборудования из ремонта должны быть приложены следующие справки:

о качестве проведенных ремонтных, строительных и монтажных работ;

о состоянии вентиляционной системы;

о состоянии электротехнических устройств;

о состоянии контрольно-измерительных приборов, предохранительных устройств;

о противопожарном и санитарном состоянии производства и о состоянии ППА;

о состоянии систем паро - и водоснабжения;

об испытании оборудования и коммуникаций на герметичность;

о состоянии узлов приема сточных вод, утилизации отходов и газообразных сбросов об освидетельствовании котлонадзорных аппаратов и грузоподъемных машин.

К акту на прием оборудования из ремонта также прикладывается дефектная ведомость, согласно которой выполнялись ремонтные работы.

После подготовки вышеперечисленных документов приглашается приемочная комиссия, возглавляемая главным инженером ЗАО "Каустик", которая проверяет полноту выполнения всех пунктов ремонтных работ, перечисленных в дефектной ведомости, и готовность цеха к эксплуатации.

После устранения замечаний, сделанных приемочной комиссией, закрывается дефектная ведомость соответствующими службами, подписываются справки - приложения к акту, затем подписывается и утверждается акт о приемке оборудования из ремонта.

После подписания акта о приемке оборудования из ремонта начальник цеха выдает письменное распоряжение на пуск цеха. Порядок пуска цеха дается в письменном задании начальником цеха.

Перед приемом сырья в цех следует выполнить следующие работы:

снять заглушки со всех межцеховых трубопроводов;

установить заглушки на всех неработающих аппаратах и трубопроводах. Снятые и установленные заглушки должны регистрироваться в журналах установки и снятия заглушек;

произвести обкатку оборудования на инертах;

принять пар, воду, азот, воздух, электроэнергию, природный газ, обессоленную воду, холода, раствор едкого натра;

отрегулировать работу вентиляционной системы.

Прием сырья и пуск цеха производить в соответствии с требованиями настоящего регламента, инструкции по пуску и эксплуатации отдельных узлов, по рабочим местам, по технике безопасности, промсанитарии и пожарной безопасности в производстве.

Подготовка к пуску, первоначальный пуск производства после капитального ремонта, а также после кратковременных остановок производства должны производиться по пусковым инструкциям.

Заключение


Из всего выше сказанного можно сделать вывод, что композиции на основе эпихлоргидрина обладают отличными свойствами, такими как:

высокая адгезия к металлам, полярным пластмассам, стеклу и керамике; высокие диэлектрические свойства;

высокая механическая прочность;

хорошая химостойкость, водостойкость, атмосферостойкость;

радиопрозрачность;

отсутствие летучих продуктов отверждения o малая усадка.

Вследствие чего находят широкое применение в промышленности. Они могут перерабатываться различными методами, а именно: литье, заливка, герметизация, формование. Используются, для изготовления слоистых пластиков, в качестве клеев, покрытий.

В связи с высокими диэлектрическими свойствами эпихлоргидрины находят широкое применение в качестве пропиточных составов для высоковольтной изоляции, в качестве герметика для заливки плат, устройств и приборов.

Также эпихлоргидрины используются в:

текстильной промышленности;

лакокрасочной промышленности;

зубопротезной и протезной промышленности;

нефтеперерабатывающей промышленности;

авиа-и ракетостроении;

машиностроении;

судостроении;

в качестве декоративных покрытий.

Наряду с применением для синтеза глицерина эпихлоргидрин употребляется в большом количестве для производства эпоксидных смол, которые получают взаимодействием дифенилолпропана, синтезируемого из ацетона и фенола, с эпихлоргидрином 6. Выводы 1. Впервые с соблюдением хронологического порядка показаны этапы строительства и развития крупнотоннажного производства синтетического глицерина из пропилена на примере ЗАО "Каустик".

Впервые на основе анализа архивных материалов показано, что специалисты завода выявили крупные технологические недочеты в проекте фирмы "Сольвей" и внесли новые технологические решения, что позволило создать работоспособную и высокоэффективную технологию производства синтетического глицерина из нефтехимического сырья.

Впервые осуществлен анализ хода строительства и монтажа оборудования крупнотоннажного производства синтетического глицерина и его производных. Показано, что при этом были применены современные методы и приемы организации работ, позволившие выполнить в кратчайшие сроки все виды деятельности от проектирования до сдачи в эксплуатацию. Установлена роль руководителей, передовиков производства, рационализаторов и изобретателей на всех этапах работ, конечным результатом которых стало получение высококачественного глицерина и его производных.

Впервые на основе анализа архивных документов воссоздана реальная картина развития производства глицерина, эпихлоригидрина и некоторых других производных глицерина со дня пуска до настоящего времени. При этом показано, что до 1996 г. это производство развивалось динамично. Дано объективное объяснение причин спада производства глицерина и эпихлоргидрина в 1996-1998 гг., связанного с уменьшением спроса на эти продукты.

Впервые подробно проанализированы этапы реконструкции и модернизации всех цехов в составе производства синтетического глицерина как на уровне отдельных аппаратов, так и цехов в целом, позволившей в конечном счете производить на ЗАО "Каустик" самый высококачественный и дешевый синтетический глицерин.

Исследованы этапы рационализаторской и изобретательской деятельности, направленной на повышение производительности труда, повышение технико-экономических показателей, улучшение условий работы персонала и снижение объемов загрязнений окружающей среды.

Список использованных источников


1. Абдрашитов Я.М., Дмитриев Ю.К., Кимсанов Б.Х., Рахманкулов Д. Л., Суюнов Р.Р., Чанышев Р.Р. Глицерин. Методы получения, промышленное производство и области применения. - М.: Химия, 2001. - 168 с.

Суюнов Р.Р., Дмитриев Ю.К., Кимсанов Б.Х., Рахманкулов Д.Л. Исторические аспекты возникновения Стерлитамакского химического завода. // Башкирский химический журнал. - 2001. - Т.8, № 1. - С.74-76.

Кимсанов Б.Х., Суюнов Р.Р., Рахманкулов Д.Л., Дмитриев Ю.К. О некоторых проблемах освоения производства глицерина на Стерлитамакском химическом заводе. // Химические реактивы, реагенты и процессы малотоннажной химии: Тезисы докладов XIV Междунар. научно-техн. конф. "Реактив-2001". - Уфа: изд-во "Реактив", 2001 г. - С.143-145.

Суюнов Р.Р., Дмитриев Ю.К., Кимсанов Б.Х., Рахманкулов Д.Л. Исторические аспекты организации в составе Стерлитамакского химического завода производства синтетического глицерина. // "Современные проблемы истории естествознания в области химии, химической технологии и нефтяного дела": Материалы I Всеросс. науч. - практ. конф. - Уфа: Государст. изд-во науч. - техн. лит-ры "Реактив", 2001. - С.36-39.

Кимсанов Б.Х., Рахманкулов Д.Л., Расулов С.А., Дмитриев Ю.К., Суюнов Р.Р. Способы получения и области применения глицерина. // Башкирский химический журнал. - 2000. - Т.7, № 6. - С.79-83.

Удалова Е.А., Семенов Б.Е., Суюнов Р.Р., Суюнов Р.Р. Новые прогрессивные химические материалы для приоритетных отраслей науки и техники. // Материалы Международной научной конференции "Молодежь и химия": Тезисы докладов. - Красноярск, 1999. - С.72.

Рахманкулов Д.Л., Латыпова Ф.Н., Сюунов Р.Р., Удалова Е.А., Чанышев Р.Р., Габитов А.И. Использование линейных и циклических ацеталей и их гетероаналогов в процессах добычи нефти и газа. // Тезисы Междунар. Симп. "TECHNOMAT98", Болгария, 10-12 сентября, 1998.

Промышленные хлорорганические продукты. Справочник. Под ред. Л.А. Ошина. Москва, 1978 г 9. Краткий справочник по химии. Под ред.О.Д. Куриленко. Киев 1974 г.

Интернет ресурсы:

1. - САЙТ О ХИМИИ

Chemistry. narod.ru - "Мир химии" - информационный сайт о химии

Ximia.org - сайт о химии для химиков


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

1,18066 г/см³ Термические свойства Т. плав. -48 °C Т. кип. 117,9 °C Т. всп. 40,6 °C Т. свспл. 415,6 °C Давление пара 13,1 мм рт. ст. (20 °С), Химические свойства Растворимость в воде 6,5 г/100 мл Оптические свойства Показатель преломления 1,43805 Классификация Рег. номер CAS 106-89-8 PubChem 7835 Рег. номер EINECS 203-439-8 SMILES Безопасность ПДК 1 мг/м 3 ЛД 50 90 мг/кг (крысы, перорально) Токсичность Высокотоксичное вещество,сильно раздражает слизистые оболочки дыхательных путей (ирритант). NFPA 704 Приводятся данные для стандартных условий (25 °C, 100 кПа) , если не указано иного.

Эпихлоргидрин (хлорметилоксиран) - органическое вещество , хлорпроизводное окиси пропилена, с формулой СH 2 (O)CH-CH 2 Cl. Широко применяется в органическом синтезе, используется в производстве эпоксидных смол и глицерина .

Синтез

Образовавшийся эпихлоргидрин отделяют перегонкой с паром и дистилляцией . Также его можно получить восстановлением хлорированного акролеина .

Физические свойства

Представляет собой бесцветную подвижную прозрачную жидкость с раздражающим запахом хлороформа , плохо растворимую в воде , хорошо в большинстве органических растворителях. С водой образует азеотропную смесь с температурой кипения 88 °С и содержит 75% эпихлоргидрина. Образует азеотропные смеси с большим числом органических жидкостей. Вследствие наличия асимметричного атома углерода эпихлоргидрин оптически активен .

Химические свойства

Эпихлоргидрин химически высокореакционное соединение, имеющее активную эпоксидную группу и подвижный атом хлора .

Реакция галогенирования

При взаимодействии хлора с эпихлоргидрином при обычных условиях образуется окись 3,3-дихлорпропилена (3,3-дихлорэпоксипропилен) :

\mathsf{CH_2CH{-}O{-}CH_2Cl + Cl_2 \rightarrow CH_2CH{-}O{-}CHCl_2 + HCl}

Реакция гидрохлорирования

Легко присоединяет хлороводород при обычной температуре как в растворе, так и в безводной среде, с образованием 1,3-дихлоргидрина :

\mathsf{CH_2CH{-}O{-}CH_2Cl + HCl \rightarrow CH_2Cl{-}CHOH{-}CH_2Cl}

Реакция дегидрохлорирования

В присутствии небольших количеств щёлочи эпихлоргидрин легко присоединяет соединения содержащие один или несколько подвижных атомов водорода, с образованием хлоргидринов:

\mathsf{RH + CH_2CH{-}O{-}CH_2Cl \xrightarrow{} RCH_2{-}CHOH{-}CH_2Cl}

При увеличении концентрации щёлочи реакция идет с отщеплением хлористого водорода и с восстановлением эпоксидной группы, но уже в другом положении :

\mathsf{RCH_2{-}CHOH{-}CH_2Cl \xrightarrow{} RCH_2{-}CH{-}O{-}CH_2}

Реакция гидролиза

При избытке щёлочи (чаще всего применяют карбонат натрия) и при температуре 100 °С эпихлоргидрин медленно превращается в глицерин :

\mathsf{2CH_2CH{-}O{-}CH_2Cl + NaCO_3 + 3H_2O \xrightarrow {100{^oC}} 2CH_2OH{-}CHOH{-}CH_2OH + 2NaCl + CO_2}

Реакция гидратации

в присутствии разбавленных неорганических кислот (серной или ортофосфорной) эпихлоргидрин образует α-монохлоргидрин глицерина :

\mathsf{CH_2CH{-}O{-}CH_2Cl + H_2O \xrightarrow{} CH_2OH{-}CHOH{-}CH_2Cl}

С повышением температуры повышается гидратация эпихлоргидрина.

Реакция этерификации

При взаимодействии эпихлоргидрина со спиртами происходит раскрытие эпоксидного кольца с образованием гидроксильной группы в положении 2 и с образованием простого эфира :

\mathsf{CH_2CH{-}O{-}CH_2Cl + HOR \rightarrow ClCH_2{-}CHOH{-}CH_2OR}

С карбоновыми кислотами эпихлоргидрин образует сложные эфиры хлоригидрина, например с ледяной уксусной кислотой при нагревании до 180 °С образуется преимущественно 1-хлор-2-гидрокси-3-пропилацетат :

\mathsf{CH_2CH{-}O{-}CH_2Cl + CH_3COOH \rightarrow ClCH_2{-}CHOH{-}CH_2COOCH_3}

Реакция аминирования

Эпихлоргидрин уже при обычной температуре присоединяет аммиак или амины с раскрытием цикла :

\mathsf{CH_2CH{-}O{-}CH_2Cl + NH_3 \rightarrow NH_2{-}CH_2{-}CHOH{-}CH_2Cl}

Реакция конденсации

Данная реакция является примером получения эпоксидных смол , получивших за последнее время в силу своих исключительных свойств очень широкое распространение .

Реакция полимеризации

Эпихлоргидрин способен полимеризоваться. В зависимости от применяемого катализатора получаются подвижные жидкости, высоковязкие масла или смолоподобные продукты .

Применение

Применяется как полупродукт для синтеза производных глицерина , красителей и поверхностно-активных вещества ; для получения синтетических материалов (главным образом, эпоксидных смол).

Токсикология и безопасность

Общий характер действия

Обладает раздражающим и аллергическим действием. В опытах на животных избирательно поражает почки. Проникает через кожу .

Эпихлоргидрин является высокотоксичным и огнеопасным соединением . Пары эпихлоргидрина при вдыхании даже небольших концентраций вызывают тошноту , головокружение и слезотечение , а при длительном воздействии приводят к более тяжелым последствиям (нередко возникают сильнейшие отёки лёгких) . Эпихлоргидрин при попадании на кожу и длительном контакте вызывает дерматиты, вплоть до поверхностных некрозов. Все работы с эпихлоргидрином необходимо проводить в резиновых перчатках, резиновом фартуке, а при сильной загазованности его парами - в противогазе марки А .

Безопасность

Эпихлоргидрин - легковоспламеняющееся вещество. При возгорании тушить диоксидом углерода, пеной или водой, равномерно распределяя её по поверхности. ПДК в воздухе рабочей зоны производственных помещений не должен превышать 1 мг/м 3 , ПДК в атмосферном воздухе населённых мест 0,2 мг/м 3 (рекомендуемая) .

Напишите отзыв о статье "Эпихлоргидрин"

Примечания

См. также

Отрывок, характеризующий Эпихлоргидрин

– Все пропало? – повторил он. – Ежели бы я был не я, а красивейший, умнейший и лучший человек в мире, и был бы свободен, я бы сию минуту на коленях просил руки и любви вашей.
Наташа в первый раз после многих дней заплакала слезами благодарности и умиления и взглянув на Пьера вышла из комнаты.
Пьер тоже вслед за нею почти выбежал в переднюю, удерживая слезы умиления и счастья, давившие его горло, не попадая в рукава надел шубу и сел в сани.
– Теперь куда прикажете? – спросил кучер.
«Куда? спросил себя Пьер. Куда же можно ехать теперь? Неужели в клуб или гости?» Все люди казались так жалки, так бедны в сравнении с тем чувством умиления и любви, которое он испытывал; в сравнении с тем размягченным, благодарным взглядом, которым она последний раз из за слез взглянула на него.
– Домой, – сказал Пьер, несмотря на десять градусов мороза распахивая медвежью шубу на своей широкой, радостно дышавшей груди.
Было морозно и ясно. Над грязными, полутемными улицами, над черными крышами стояло темное, звездное небо. Пьер, только глядя на небо, не чувствовал оскорбительной низости всего земного в сравнении с высотою, на которой находилась его душа. При въезде на Арбатскую площадь, огромное пространство звездного темного неба открылось глазам Пьера. Почти в середине этого неба над Пречистенским бульваром, окруженная, обсыпанная со всех сторон звездами, но отличаясь от всех близостью к земле, белым светом, и длинным, поднятым кверху хвостом, стояла огромная яркая комета 1812 го года, та самая комета, которая предвещала, как говорили, всякие ужасы и конец света. Но в Пьере светлая звезда эта с длинным лучистым хвостом не возбуждала никакого страшного чувства. Напротив Пьер радостно, мокрыми от слез глазами, смотрел на эту светлую звезду, которая, как будто, с невыразимой быстротой пролетев неизмеримые пространства по параболической линии, вдруг, как вонзившаяся стрела в землю, влепилась тут в одно избранное ею место, на черном небе, и остановилась, энергично подняв кверху хвост, светясь и играя своим белым светом между бесчисленными другими, мерцающими звездами. Пьеру казалось, что эта звезда вполне отвечала тому, что было в его расцветшей к новой жизни, размягченной и ободренной душе.

С конца 1811 го года началось усиленное вооружение и сосредоточение сил Западной Европы, и в 1812 году силы эти – миллионы людей (считая тех, которые перевозили и кормили армию) двинулись с Запада на Восток, к границам России, к которым точно так же с 1811 го года стягивались силы России. 12 июня силы Западной Европы перешли границы России, и началась война, то есть совершилось противное человеческому разуму и всей человеческой природе событие. Миллионы людей совершали друг, против друга такое бесчисленное количество злодеяний, обманов, измен, воровства, подделок и выпуска фальшивых ассигнаций, грабежей, поджогов и убийств, которого в целые века не соберет летопись всех судов мира и на которые, в этот период времени, люди, совершавшие их, не смотрели как на преступления.
Что произвело это необычайное событие? Какие были причины его? Историки с наивной уверенностью говорят, что причинами этого события были обида, нанесенная герцогу Ольденбургскому, несоблюдение континентальной системы, властолюбие Наполеона, твердость Александра, ошибки дипломатов и т. п.
Следовательно, стоило только Меттерниху, Румянцеву или Талейрану, между выходом и раутом, хорошенько постараться и написать поискуснее бумажку или Наполеону написать к Александру: Monsieur mon frere, je consens a rendre le duche au duc d"Oldenbourg, [Государь брат мой, я соглашаюсь возвратить герцогство Ольденбургскому герцогу.] – и войны бы не было.
Понятно, что таким представлялось дело современникам. Понятно, что Наполеону казалось, что причиной войны были интриги Англии (как он и говорил это на острове Св. Елены); понятно, что членам английской палаты казалось, что причиной войны было властолюбие Наполеона; что принцу Ольденбургскому казалось, что причиной войны было совершенное против него насилие; что купцам казалось, что причиной войны была континентальная система, разорявшая Европу, что старым солдатам и генералам казалось, что главной причиной была необходимость употребить их в дело; легитимистам того времени то, что необходимо было восстановить les bons principes [хорошие принципы], а дипломатам того времени то, что все произошло оттого, что союз России с Австрией в 1809 году не был достаточно искусно скрыт от Наполеона и что неловко был написан memorandum за № 178. Понятно, что эти и еще бесчисленное, бесконечное количество причин, количество которых зависит от бесчисленного различия точек зрения, представлялось современникам; но для нас – потомков, созерцающих во всем его объеме громадность совершившегося события и вникающих в его простой и страшный смысл, причины эти представляются недостаточными. Для нас непонятно, чтобы миллионы людей христиан убивали и мучили друг друга, потому что Наполеон был властолюбив, Александр тверд, политика Англии хитра и герцог Ольденбургский обижен. Нельзя понять, какую связь имеют эти обстоятельства с самым фактом убийства и насилия; почему вследствие того, что герцог обижен, тысячи людей с другого края Европы убивали и разоряли людей Смоленской и Московской губерний и были убиваемы ими.
Для нас, потомков, – не историков, не увлеченных процессом изыскания и потому с незатемненным здравым смыслом созерцающих событие, причины его представляются в неисчислимом количестве. Чем больше мы углубляемся в изыскание причин, тем больше нам их открывается, и всякая отдельно взятая причина или целый ряд причин представляются нам одинаково справедливыми сами по себе, и одинаково ложными по своей ничтожности в сравнении с громадностью события, и одинаково ложными по недействительности своей (без участия всех других совпавших причин) произвести совершившееся событие. Такой же причиной, как отказ Наполеона отвести свои войска за Вислу и отдать назад герцогство Ольденбургское, представляется нам и желание или нежелание первого французского капрала поступить на вторичную службу: ибо, ежели бы он не захотел идти на службу и не захотел бы другой, и третий, и тысячный капрал и солдат, настолько менее людей было бы в войске Наполеона, и войны не могло бы быть.
Ежели бы Наполеон не оскорбился требованием отступить за Вислу и не велел наступать войскам, не было бы войны; но ежели бы все сержанты не пожелали поступить на вторичную службу, тоже войны не могло бы быть. Тоже не могло бы быть войны, ежели бы не было интриг Англии, и не было бы принца Ольденбургского и чувства оскорбления в Александре, и не было бы самодержавной власти в России, и не было бы французской революции и последовавших диктаторства и империи, и всего того, что произвело французскую революцию, и так далее. Без одной из этих причин ничего не могло бы быть. Стало быть, причины эти все – миллиарды причин – совпали для того, чтобы произвести то, что было. И, следовательно, ничто не было исключительной причиной события, а событие должно было совершиться только потому, что оно должно было совершиться. Должны были миллионы людей, отрекшись от своих человеческих чувств и своего разума, идти на Восток с Запада и убивать себе подобных, точно так же, как несколько веков тому назад с Востока на Запад шли толпы людей, убивая себе подобных.
Действия Наполеона и Александра, от слова которых зависело, казалось, чтобы событие совершилось или не совершилось, – были так же мало произвольны, как и действие каждого солдата, шедшего в поход по жребию или по набору. Это не могло быть иначе потому, что для того, чтобы воля Наполеона и Александра (тех людей, от которых, казалось, зависело событие) была исполнена, необходимо было совпадение бесчисленных обстоятельств, без одного из которых событие не могло бы совершиться. Необходимо было, чтобы миллионы людей, в руках которых была действительная сила, солдаты, которые стреляли, везли провиант и пушки, надо было, чтобы они согласились исполнить эту волю единичных и слабых людей и были приведены к этому бесчисленным количеством сложных, разнообразных причин.
Фатализм в истории неизбежен для объяснения неразумных явлений (то есть тех, разумность которых мы не понимаем). Чем более мы стараемся разумно объяснить эти явления в истории, тем они становятся для нас неразумнее и непонятнее.
Каждый человек живет для себя, пользуется свободой для достижения своих личных целей и чувствует всем существом своим, что он может сейчас сделать или не сделать такое то действие; но как скоро он сделает его, так действие это, совершенное в известный момент времени, становится невозвратимым и делается достоянием истории, в которой оно имеет не свободное, а предопределенное значение.
Есть две стороны жизни в каждом человеке: жизнь личная, которая тем более свободна, чем отвлеченнее ее интересы, и жизнь стихийная, роевая, где человек неизбежно исполняет предписанные ему законы.

Получение эпихлоргидрина. Как видно из схемы (см. стр. 184), получение эпихлоргидрина является важной промежуточной сту­пенью при синтезе глицерина. Эпихлоргидрин впервые был

Синтезирован в 1854 г. при взаимодействии глицерина с хло­ристым водородом:

СН2-СН-СНа+ 2НС1 100~120 СН2-СН-СН2+2Н20

TOC \o "1-3" \h \z I - I I III

ОН ОН ОН С1 ОН С1

СН2-CH-СН2 + NaOH 6°"8° CH2-CH-CH2 + NaCl + H,0

С1 ОН С1 С1 о

Этот метод получил наибольшее распространение.

Эпихлоргидрин образуется из аллилхлорида после присоедине­ния хлорноватистой ^ислоты через дихлоргидрин и дальнейшего отщепления соляной кислоты известковым молоком :

СН2-СН-СН2 (30%)-

2СН2- СНСН2С1 .20_40 oCj рн=з - г - &

-* сн2-сн-сн2 (70%)- I I I CI CI он

Технологическая схема промышленного метода получения эпи - хлоргидрина из аллилхлорида изображена на рис. 46. Для получе­ния дихлоргидрина аллихлорид вводят в реакцию обмена с хлорно­ватистой кислотой в водной фазе. Поскольку аллилхлорид плохо растворяется в воде (при 20 °С в воде растворяется только 0,36 вес. % аллилхлорида), необходимо принимать особые меры, чтобы воспре­пятствовать прямому контакту хлора и аллилхлорида. В противном случае в результате присоединения хлора образуется слишком большое количество трихлорпропана.

Чтобы не допустить непосредственного соприкосновения хлора с аллихлоридом, хлорноватистую кислоту получают в отдельной башне и работают с большим разбавлением и при низкой температуре. Это делается; для того, чтобы введенный хлор по возможности без остатка перешел в хлорноватистую кислоту:

С12 + Н20 ->- НОС1 + НС1

Хлорноватистую кислоту получают в башне с кислотоупорной облицовкой путем непрерывного введения 1-2%-ного раствора едкого натра и хлора. Образовавшаяся кислота выходит из верхней части башни, затем при тщательном смешении реагирует с аллил - хлоридом. При этом происходит хлоргидрирование. Из процесса постоянно выводится реакционная смесь в количестве, равном объему выходящей из башни хлорноватистой кислоты.

Реакционная смесь пропускается через термодиффузионное раз­делительное устройство, где отделяются трихлорпропан и тетра-

Рис. 46. Технологическая схема получения эпихлоргидрина и глицерина на

Промышленной установке: а - хлорирование пропилена: 1 - нагреватель (от 20 до 400 °С); 2 - реактор; 3 - фракционная колонна; 4 - абсорбер; 5 - промывная колонна; в - сушильная башня; 7 - система из трех колонн для перегонки

Аллилхлорида. б - хлоргидрирование аллилхлорида: I - растворитель щелочи; 2 - приготовление НОСІ; 3 - реактор; 4 - отбор трихлорпро - пена и тетрахлорпропилоного эфира; 5 - аппарат для отщепления НС1; в - колонна азео - ропной дистилляции; 7 - сепаратор; 8- система из дв^х колонн для обезвоживания и пере­гонки эпихлоргидрина; в - омыление эпихлоргидрина: 1 - подогреватель (Юо-180 °С, 10 кгс/см2); 2 - нейтрализатор; з - колонна для пере­гонки глицерина.

Хлордиизопропиловый эфир. После смешения дихлОргидрина в аппа­рате с мешалкой с 15%-ным известковым молоком в реакционной колонне осуществляется превращение в эпихлоргидрин и отгоняется азеотропная смесь с водой. Водный слой возвращается в реакцион­ную колонну, а сырой эпихлоргидрин дистиллируется в другой колонне. При такой технологии выход составляет более 90%.

Разработан метод непосредственного получения эпихлоргидрина из аллилхлорида, минуя промежуточную стадию образования гли - цериндихлоргидрина. Он состоит в окислении аллилхлорида пере - кисными соединениями. Однако этот метод до сих пор не внедрен в промышленность. В литературе указаны следующие окислители для этой цели: надуксусная или надпропионовая кислота , перекись водорода в присутствии W03 , кислород и ацетальде­гид , пероксикарбоксиминокислота , ароматические нитро- «оединения , а также каталитическое окисление воздухом на окиси серебра. Окись серебра, нанесенная на губчатый алюминий, предварительно активируется пропусканием над ней водорода и азота .

Современное мировое производство эпихлоргидрина оценивается в 300 тыс. т. Исходным продуктом почти всегда служит аллихлорид.

Свойства и применение. Ниже приведены свойства эпихлор­гидрина:

Температура плавления, °С,.............................................................. -57,2

Температура кипения, °С.................................................................. 116,11

Плотность

Р§ ................................................................ 1,2040

PS.............................................................................................. 1,2031

Р|5............................................................................................... 1,1732

РІ°о............................................................................................ 1,1633

Показатель преломления

П\о.............................................................................................. 1,43805

Им.................................................................................................. 1,43580

Вязкость, П

При 0°С...................................................................................... 0,0156

25° С................................................................................. 0,0103

Поверхностное натяжение, дин/см

TOC \o "1-3" \h \z при 12,5° С.................................................................................... 39,13

31,0° С................................................................................ 35,48

89,0° С............................................................................... 27,72

Теплота сгорания, кал/г.................................................................... 4524.4

Температура воспламенения, °С....................................................... 40,5

Диэлектрическая проницаемость

При 21,5° С........................................................................................ 20,8

Электропроводность

При 25° С, OM-1-CM-1.............................................................. . 34-Ю"9

О растворимости воды в эпихлоргидрине см. в работе , об азеотропных смесях с различными растворителями - в работе .

Эпихлоргидрин - химически очень активное соединение, высо­кой активностью обладают содержащиеся в нем эпоксигруппа и атом хлора. Поэтому эпихлоргидрин приобретает все большее значение, как промежуточный продукт органической химии. Наряду с приме­нением для синтеза глицерина эпихлоргидрин употребляется в боль­шом количестве для производства эпоксидных смол, которые полу­чают взаимодействием дифенилолпропана, синтезируемого из ацетона и фенола, с эпихлоргидрином. эпоксидных смол непре­рывно увеличивается. Рассчитывают, что в 1980 г. в США выпуск их достигнет 80 тыс. т. Эпоксидные смолы производятся также в Англии, Голландии, ФРГ, Швейцарии, Бельгии, Франции, Япо­нии, ЧССР и СССР. Кроме того, эпихлоргидрин находит применение в производстве ионообменных смол.

Недавно эпихлоргидрин стали применять для получения хлор - гидринового каучука:

С этой целью эпихлоргидрин полимеризуют с алкилалюминием в присутствии хелата металла, иногда вместе с окисью этилена ., Хлоргидриновые каучуки разработаны фирмой Hercules Pow­der (США).

Гомополимер поступает в продажу под названием Гидрин 100, а сополимер с окисью этилена - под названием Гидрин 200 (с недав­них пор Херклор X и Херклор Ц). По данным фирмы, эти типы гид - ринов должны обладать такой комбинацией свойств, какой до сих пор не было ни у одного из синтетических каучуков. По жаростой­кости и сопротивлению действию озона и других окислителей Гидрин 100 и Гидрин 200 равны этилен-пропиленовым сополимерам. По мас - лостойкости они приближаются к нитрильному каучуку, а по газо­проницаемости соответствуют бутилкаучуку.

При реакции эпихлоргидрина с фенолами или спиртами полу­чаются простые глицидные эфиры, применяемые для различных целей в качестве активных растворителей или как стабилизаторы для галогенсодержащих полимеров.

Способность к поликонденсации продуктов взаимодействия эпи­хлоргидрина и аммиака используется для получения высокомоле­кулярных смол.

С H 6 X II в химии и химической технологии. Том XXIV. 2010. Nb 5 (110)

значений констант комплексообразования для лиганда L2 и экспериментальных данных был рассчитан спектр поглощения комплексов красителя L2 с катионами магния и лигандом L*, получены график, отображающий состав раствора во время титрования и кривая титрования при длине волны максимального поглощения красителя L2.

Таким образом, нами было установлено, что соединение Li с перхлоратом магния образует комплекс и . Смещение длинноволновой полосы поглощения для обоих лигандов близкое по значению (30 нм - в случае Li и 38 нм - L2). Сравнение значений констант устойчивости комплексов одинакового состава для соединений Li и L2 показало,

что комплекс практически на 4 порядка более устойчив, чем 2+

комплекс . По-видимому, это связано с тем, что электроноак-цепторные свойства тиофенового фрагмента приводят к заметному понижению электронодонорных свойств атомов кислорода краун-эфира, находящихся в сопряжении с тиофеновым ядром. В результате сродство краун-эфира к катионам магния в тиофеновом производном оказывается существенно ниже, чем в производном бензокраун-эфира.

1. Стид Дж.В. Супрамолекулярная химия/ Стид Дж.В., Этвуд Дж.Л. М.: Академкнига, 2007.

2. О. Fedorova, Е. Lukovskaya, A. Mizerev, Yu. Fedorov, A. Bobylyova, А. Maksimov, A. Moiseeva, A. Anisimov, G. Jonusauskas .// J. Ph. Org. Chem., 2010. V.23. P.246-254.

3. Sone T., Sato К., Ohba Y. // J. Bull. Chem. Soc. Jpn., 1989. V.62. P. 838-844.

4. Wei Y., Yang Y., Yen J.-M. // Chem. Mater., 1996. V.8. P. 2659-2666.

5. Федорова O.A., Андрюхина E.H., Линдеман A.B., Басок С.С., Богащенко Т.Ю., Громов С.П. //Изв. АН, Сер. хим., 2002. № 5. С. 302-307.

С.М. Данов, A.B. Сулимов, A.B. Сулимова

Дзержинский политехнический институт (филиал) НГТУ им. P.E. Алексеева, Дзержинск, Россия

СОВРЕМЕННЫЕ ПРОЦЕССЫ ПОЛУЧЕНИЯ ЭПИХЛОРГИДРИНА

The review of industrial ways of reception epichlorohydrin is presented; their advantages and lacks are considered. Manufacture process epichlorohydrin by heterogeneous-catalytic oxidation of allyl chloride with an aqueous solution of hydrogen peroxide in the environment of organic solvent at presence titanium-containing silicalite was investigated and the estimation of prospects of its industrial realization is given.

С lb 6 X U/ в химии и химической технологии. Том XXIV. 2010. Nb 5 (110)

Представлен обзор промышленных способов получения эпихлоргидрина, рассмотрены их преимущества и недостатки. Исследован процесс производства эпихлоргидрина гетерогенно-каталитическим окислением аллилхлорида водным раствором пероксида водорода в среде органического растворителя в присутствии титансодержащего силикалита и дана оценка перспектив его промышленной реализации.

Эпихлоргидрин является важным продуктом основного органического синтеза. Обладая рядом ценных свойств, он находит широкое применение как полупродукт органического синтеза. К числу продуктов производимых на основе эпихлоргидрина относятся разнообразные лаки, краски, клеи, синтетические волокна, ионообменные смолы, каучуки, характеризующиеся высокой масло- и термостойкостью и газонепроницаемостью и др. Однако, несмотря на все многообразие продуктов, получаемых на его основе, около 68 % эпихлоргидрина используется для получения эпоксидных смол. Особенно важное значение приобретают эпоксидные смолы в химической промышленности вследствие их высокой коррозионной стойкости. Перспективно использование эпоксидных смол в строительстве, где они применяются как компоненты заливочных и пропиточных клеев, герметиков, связующих для армированных пластиков и пр.

До настоящего времени основным промышленным способом производства эпихлоргидрина являлся хлоргидринный метод. Он впервые был реализован компанией «Shell» в 1947 г. Его внедрение стало возможным после разработки способа получения хлористого аллила высокотемпературным хлорированием пропилена.

В основе процесса лежит реакция гипохлорирования аллилхлорида, приводящая к образованию дихлоргидринов глицерина, которые в дальнейшем подвергаются дегидрохлорированию.

Н2С-СН-СН2 (30%) -

2НОС1 CI ОН CI _^

2 н2с=сн-СН2 -

¿1 20 - 40 °С. рН= 3 - 5

Н2С-СН-СН2 (70%) - CI CI ОН

2 Н2С-СН-СН2

СаС12; Н20 Ч0/ ¿1

Однако, рассматриваемый метод имеет существенные недостатки, а именно, низкий коэффициент использования дефицитного хлора, применение на стадиях гипохлорирования и дегидрохлорирования крайне разбавленных водных растворов реагентов, что приводит к уменьшению производительности аппаратуры и образованию больших количеств загрязненных сточных вод содержащих СаС 12 и хлорорганические примеси, очистка от которых трудоемка и требует больших затрат.

Более перспективным способом получения эпихлоргидрина, по сравнению с хлоргидринным методом, является эпоксидирование аллилхлорида гидроперекисями органических соединений. Наибольший интерес представляет предложенный фирмой «Халкон» (США) способ, основанный на применении в качестве эпоксидирующих агентов различных гидроперекисей. Наиболее высокую активность в реакциях эпоксидирования хлористого ал-

С 1h 6 X Uz в химии и химической технологии. Том XXIV. 2010. № 5 (110)

лила проявляют гидроперекиси этилбензола, изопропилбензола и трет-бутила.

н2с^=сн-СН2 + Н3С-с-о-он-н2с-сн-сн2 + н3с-с-он

Достоинством Халкои-метода является малочисленность стадий, его относительная простота и отсутствие больших количеств хлорсодержащих побочных продуктов. Однако, процесс характеризуется сравнительно невысокой избирательностью по гидроперекиси, неполной ее конверсией и сложностью организации рецикла гидроперекиси, необходимостью работы с большим избытком хлористого аллила и, как следствие, увеличением затрат на выделение целевого продукта. Все это ограничивает широкое промышленное применение данного метода.

Интересный способ получения эпихлоргидрина на основе глицирина, являющегося побочным продуктом производства биодизеля, был предложен компанией Solvay. Процесс включает в себя гидрохлорирование глицерина в дихлорпропанол и дегидрохлорирование последнего раствором щелочи с получением эпихлоргидрина. В 2007 году во Франции было запущено опытное производство. Важным преимуществом способа является возможность его базирования на возобновляемых источниках сырья. Однако, относительно низкая селективность образования дихлорпропанолов, а также невысокая степень превращения хлористого водорода и глицерина в целевой продукт являются существенным недостатком метода, сдерживающим его промышленное внедрение.

В последние 10 лет наметилась тенденция замещения традиционных способов гетерогенно-каталитическими, которые более приемлемы как с точки зрения экологии, так и экономики. Наибольший интерес в этом направлении представляют способы получения эпихлоргидрина, основанные на использовании в качестве окислителя молекулярного кислорода и перок-сида водорода, поскольку оба эти окислителя являются экологически чистыми и недорогими.

Окисление молекулярным кислородом при «комнатных условиях» остается наиболее предпочтительным, однако до сих пор такой процесс представляется не осуществимым. Более перспективным становится использование второго «зеленого» окислителя - пероксида водорода, который называют «восходящей химической звездой» и «идеальным окислителем», так как единственным образующимся из него побочным продуктом является вода, а по процентному содержанию кислорода в молекуле пероксид водорода

С 1Ь 6 X № в химии и химической технологии. Том XXIV. 2010. Nb 5 (110)

стоит на втором месте после молекулярного кислорода. На сегодняшний день, лучшими гетерогенными катализаторами для жидкофазного окисления аллилхлорида пероксидом водорода являются микропористые титан содержащие силикалиты.

Преимуществом данного способа является отсутствие образования сопутствующих продуктов, загрязняющих технологические потоки и стоки производства, и удешевление себестоимости целевого продукта.

В основе рассматриваемого процесса получения эпихлоргидрина лежит взаимодействие аллилхлорида с водным раствором пероксида водорода в присутствии катализатора в среде органического растворителя:

н2с=сн-сн2 + и7о7 -н2с-сн-СН2 + Н,0

Отличительной особенностью процесса является то, что он проводится при умеренных температурах (40-60 °С) и небольшом давлении, необходимом для поддержания реагентов в жидкой фазе и основным побочным продуктом является вода.

Нами была произведена отработка данной технологии на лабораторной установке периодического действия, изучено влияние природы органического растворителя и определены оптимальные условия синтеза эпихлоргидрина. В ходе исследования установили, что в оптимальных условиях достигается 99 % конверсия пероксида водорода при селективности в целевой продукт не менее 95 %.

В настоящее время нами разрабатывается установка получения эпихлоргидрина непрерывного действия на синтезированном титан - содержащем цеолите.

Таким образом, метод прямого эпоксидирования аллилхлорида водным раствором пероксида водорода в среде органического растворителя на гетерогенном катализаторе является перспективным способом получения эпихлоргидрина и может быть рекомендован для промышленного применения.

УДК 66.093.48 (66.097.38) И.М. Гусев, Е.В. Варламова, Е.А. Горбатенко, В.Ф. Швец, Р.А. Козловский Российский химико-технологический университет им. Д.И. Менделеева, Москва, Россия

ДЕГИДРАТАЦИЯ ПРОИЗВОДНЫХ молочной кислоты до АЛКИЛАКРИЛАТОВ

We investigated the possibility of catalytic dehydration of lactic acid derivatives, in particular methyl lactate, to obtain methyl acrylate, demanded as a monomer in the manufacture of a wide range of polymer materials. The possibility of using zeolite catalysts for the process of dehydration and also the possibility of restoring the catalytic activity of zeolites by oxidative regenera-

Исследована возможность каталитической дегидратации производных молочной кислоты, в частности метиллактата, с целью получения метилакрилата, востребованного в

Смирнов А. С. 1 , Мирзебасов М. А. 2 , Смирнов С. Н. 3

1 ORCID: 0000-0002-1562-4591, Аспирант, 2 ORCID: 0000-0002-4287-8829, Аспирант, 3 ORCID: 0000-0002-8197-5752, Доктор медицинских наук, Луганский государственный медицинский университет

ИЗМЕНЕНИЯ ВЫСОТЫ ЭПИТЕЛИЯ СЛИЗИСТОЙ ОБОЛОЧКИ ПИЛОРИЧЕСКОГО ОТДЕЛА ЖЕЛУДКА КРЫС ПОД ДЕЙСТВИЕМ ЭПИХЛОРГИДРИНА И ИХ КОРРЕКЦИЯ

Аннотация

В статье рассмотрены результаты экспериментального исследования закономерностей действия эпихлоргидрина на однослойный эпителий желудочных ямок слизистой оболочки пилорического отдела желудка крыс. Показано, что эпихлоргидрин вызывает изменения состояния эпителия, которые сохраняются после прекращения его введения. Характер изменения высоты эпителия желудочных ямок зависит от времени, прошедшего с момента прекращения ингаляций эпихлоргидрина. Применение экстракта эхинацеи пурпурной и тиотриазолина на фоне действия эпихлоргидрина уменьшает выраженность вызванного ним изменения высоты эпителия.

Ключевые слова: эпителий, желудок, эпихлоргидрин.

Smirnov A. S. 1 , Mirzebasov M. A. 2 , Smirnov S. N. 3

1 ORCID: 0000-0002-1562-4591, Postgraduate student, 2 ORCID: 0000-0002-4287-8829, Postgraduate student, 3 ORCID: 0000-0002-8197-5752, MD, Lugansk State Medical University

CHANGES IN THE HEIGHT OF THE MUCOSAL EPITHELIUM OF THE PYLORIC PART OF THE STOMACH OF RATS UNDER THE INFLUENCE OF EPICHLOROHYDRIN AND THEIR CORRECTION

Abstract

The article describes the results of an experimental study of the laws of the action of epichlorohydrin on a single-layer epithelium of the gastric mucosa pyloric stomach of rats. It is shown that the epichlorohydrin causes changes state of epithelium that persist after cessation of administration. Character change the height of the epithelium of the gastric pits depends on the time that has elapsed since the termination of inhaled epichlorohydrin. The use of Thiotriazoline and the extract of Echinacea purpurea on the background of epichlorohydrin reduces the severity of the epithelium height changes caused by epichlorohydrin.

Keywords : epithelium, stomach, epichlorohydrin.

Заболевания желудка главным образом обусловлены изменениями, наступающими в его слизистой оболочке. Морфофункциональные перестройки в ней происходят под действием различных эндогенных и экзогенных факторов . Среди этих факторов значительное место принадлежит агентам хипической природы, поступающим в организм преимущественно алиментарным и ингаляционным путями . В быту и в условиях химического производства происходит контакт человека с эпоксидными соединениями. Представителем таких соединений является эпихлоргидрин, поступление которого в организм вызывает изменения со стороны различных органов и систем, в том числе глаз, дыхательных путей, кожи, репродуктивных органов, иммунной системы . Однако, закономерности действия эпихлоргидрина на желудок изучены недостаточно, что обусловливает актуальность проведения исследований в данном направлении.

Цель исследования. Изучить роль ингаляционного действия эпихлоргидрина в возникновении изменений высоты однослойного эпителия желудочных ямок слизистой оболочки пилорического отдела желудка крыс и обосновать возможность применения экстракта эхинацеи пурпурной и тиотриазолина в качестве корректоров вызванных изменений.

Материал и методы исследований. В эксперименте использовали белых беспородных половозрелых крыс-самцов. Формировали шесть экспериментальных групп по тридцать крыс в каждой. Крысы первой группы служили контролем. Крысы второй экспериментальной группы два месяца пять дней в неделю в течение пяти часов в день подвергались ингаляционному воздействию эпихлоргидрина в дозе 10 ПДК (10 мг/кг). Крысам третьей экспериментальной группы на протяжении двух месяцев по пять дней в неделю через желудочный зонд вводили экстракт эхинацеи пурпурной по 200 мг/кг массы тела. Крысам четвертой экспериментальной группы в течение двух месяцев пять дней в неделю в внутрибрюшинно в дозе 117,4 мг/кг массы тела вводили 2,5% раствор тиотриазолина. Крысы пятой экспериментальной группы получали эпихлоргидрин и экстракт эхинацеи пурпурной, крысы шестой экспериментальной группы – эпихлоргидрин и тиотриазолин.

На первые, седьмые, пятнадцатые, тридцатые и шестидесятые сутки после прекращения двухмесячного воздействия изучаемых факторов выводили из эксперимента по шесть крыс из каждой экспериментальной группы. Желудок фиксировали в 10% растворе нейтрального формалина. Гистологическую обработку выполняли по стандартной методике путем обезвоживания в растворах этилового спирта с последующим удалением спирта с помощью ксилола. Препараты заливали в парафин. Для изучения структуры желудка его срезы окрашивали гематоксилин-эозином и по Ван Гизону. Определяли высоту однослойного эпителия желудочных ямок слизистой оболочки пилорического отдела желудка крыс Статистическую обработку полученных результатов проводили с использованием программы Exсel. Для определения достоверности различий применяли критерий U Манна – Уитни. Различия считали достоверными при p<0,05.

Результаты исследования. На первые и на седьмые сутки после завершения ингаляций эпихлоргидрина высота однослойного эпителия желудочных ямок слизистой оболочки пилорического отдела желудка крыс была меньше, чем у интактных крыс контрольной группы на 21,9% (р<0,01), и на 24,6% (р<0,01) соответственно, а на тридцатые и на шестидесятые сутки – больше на 19,9% (р<0,01) и на 6,8% (р<0,05) соответственно. У крыс, перенесших ингаляции эпихлоргидрина, высота однослойного эпителия желудочных ямок в период с первых по седьмые сутки не претерпевала статистически значимых изменений. Однако, с седьмых по тридцатые сутки наблюдения происходил постепенный рост показателя на 76,9% (р<0,01), а в тридцатых по шестидесятые сутки – его уменьшение на 14,1% (р<0,01). За период с первых по шестидесятые сутки высота эпителия волнообразно возрастала на 43,0% (р<0,01) (таблица).

После завершения введения экстракта эхинацеи пурпурной высота однослойного эпителия желудочных ямок слизистой оболочки пилорического отдела желудка крыс не отличалась от таковой у интактных крыс контрольной группы ни в одном из сроков наблюдения (р>0,05). Введение тиотриазолина сопровождалось увеличением высоты эпителия в сравнении с аналогичным показателем у интактных крыс контрольной группы на 7,6% (р<0,05) на седьмые сутки наблюдения (таблица).

В сравнении с высотой эпителия желудочных ямок слизистой оболочки пилорического отдела желудка интактных крыс контрольной группы этот показатель у крыс, которым вводили эпихлоргидрин и экстракт эхинацеи пурпурной, оказался меньшим на 14,7% (р<0,05) и на 8,5% (р<0,05) соответственно на первые и на седьмые сутки, но большим на 9,9% (р<0,05) на тридцатые сутки после окончания введения.

В результате сопоставления высоты эпителия желудочных ямок у крыс, перенесших воздействие эпихлоргидрина, и у крыс, на которых действовали эпихлоргидрин и экстракт эхинацеи пурпурной, было показано, что применение экстракта эхинацеи пурпурной увеличивало высоту эпителия на первые сутки наблюдения на 9,2% (р<0,05), на седьмые сутки – на 21,3% (р<0,01), и уменьшало его высоту на тридцатые сутки на 8,4% (р<0,05). В период с первых по шестидесятые сутки исследования в экспериментальной группе крыс, которым вводили эпихлоргидрин и экстракт эхинацеи пурпурной, наблюдался волнообразный рост высоты однослойного эпителия желудочных ямок на 26,6% (р<0,01) (таблица).

На первые сутки после окончания введения эпихлоргидрина и тиотриазолина высота эпителия желудочных ямок крыс оказалась меньше на 8,9% (р<0,05), а на пятнадцатые сутки – больше на 9,2% (р<0,05), чем у интактных крыс контрольной группы. Высота эпителия у крыс, на которых воздействовали эпихлоргидрин и тиотриазолин, была больше соответствующего показателя у крыс, перенесших ингаляции эпихлоргидрина, на первые сутки наблюдения на 16,6% (р<0,05), на седьмые сутки – на 33,0% (р<0,01), на пятнадцатые сутки – на 10,8% (р<0,05). В экспериментальной группе крыс, получавших эпихлоргидрин и тиотриазолин, с первых по шестидесятые сутки после прекращения их введения наблюдалось волнообразное увеличение высоты эпителия 19,1% (р<0,05) (таблица).

Таблица 1 – Высота однослойного эпителия желудочных ямок слизистой оболочки пилорического отдела желудка крыс после введения эпихлоргидрина, экстракта эхинацеи пурпурной, тиотриазолина (M±СКО, мкм)

Примечание:

* – р<0,05 в сравнении с показателями интактных крыс контрольной группы;

# – р<0,05 в сравнении с показателями крыс, которым проводили ингаляции эпихлоргидрина;

х – р<0,05 при сравнении показателей крыс одной экспериментальной группы в разные сроки наблюдения.

Полученные экспериментальные данные позволяют сделать выводы о характере влияния эпихлоргидрина, экстракта эхинацеи пурпурной и тиотриазолина на однослойный эпителий желудочных ямок слизистой оболочки пилорического отдела желудка крыс.

  1. Эпихлоргидрин вызывает изменения состояния однослойного эпителия желудочных ямок слизистой оболочки пилорического отдела желудка крыс, которые сохраняются после прекращения его введения.
  2. Характер изменения высоты эпителия желудочных ямок зависит от времени, прошедшего с момента прекращения ингаляций эпихлоргидрина. В первые семь суток высота эпителия уменьшается, но к тридцатым суткам происходит ее увеличения, которое наблюдается до конца исследования.
  3. Применение экстракта эхинацеи пурпурной и тиотриазолина на фоне действия эпихлоргидрина уменьшает выраженность вызванного ним изменения высоты однослойного эпителия желудочных ямок слизистой оболочки пилорического отдела желудка.

Дальнейшее изучение закономерностей влияния эпихлоргидринана на желудок позволит создать экспериментальную основу для понимания механизмов развития изменений состояния органа, а также даст возможность обосновать пути разработки эффективной коррекции этих изменений.

Литература

  1. Канькова Н.Ю. Особенности поражения слизистой желудка и двенадцатиперстной кишки у детей с хроническим гастродуоденитом с различным содержанием микрофлоры / Н.Ю.Канькова, Е.А.Жукова, Н.Ю.Широкова, Т.А.Видманова // Вестник Российской академии медицинских наук. – 2014. – № 9 – 10. – С. 51 – 56.
  2. Шаяхметов С. Ф. Изменения иммунореактивности у работников химических производств в зависимости от дозовой нагрузки токсикантами / Шаяхметов С. Ф., Бодиенкова Г. М., Мещакова Н. М., Курчевенко С. И. // Гигиена и санитария. – № 4. – 2012. – C. 40 – 43.

References

  1. Kan’kova N.YU. Osobennosti porazheniya slizistoj zheludka i dvenadcatiperstnoj kishki u detej s hronicheskim gastroduodenitom s razlichnym soderzhaniem mikroflory / N.YU.Kan’kova, E.A.ZHukova, N.YU.SHirokova, T.A.Vidmanova // Vestnik Rossijskoj akademii medicinskih nauk. – 2014. – № 9 – 10. – S. 51 – 56.
  2. Shayahmetov S. F. Izmeneniya immunoreaktivnosti u rabotnikov himicheskih proizvodstv v zavisimosti ot dozovoj nagruzki toksikantami / SHayahmetov S. F., Bodienkova G. M., Meshchakova N. M., Kurchevenko S. I. // Gigiena i sanitariya. – № 4. – 2012. – C. 40 – 43.
  3. Blake S.B. Spatial relationships among dairy farms, drinking water quality, and maternal-child health outcomes in the San Joaquin Valley / S.B.Blake // Public Health Nurs. – 2014. – № 31(6). Р. 492 – 499.
  4. El-Ghazaly M.A. Anti-ulcerogenic effect of aqueous propolis extract and the influence of radiation exposure / M.A.El-Ghazaly, R.R.Rashed, M.T.Khayyal // Int J Radiat Biol. – 2011. – №8 7(10). – Р. 1045 – 1051.
  5. Fahmy H.A. Gastroprotective effect of kefir on ulcer induced in irradiated rats / H.A.Fahmy, A.F.Ismail // J Photochem Photobiol B. – 2015. – № 144. – Р. 85 – 93.
  6. Lee I.C. Apoptotic cell death in rat epididymis following epichlorohydrin treatment / I.C.Lee, K.H.Kim, S.H.Kim, H.S.Baek, C.Moon, S.H.Kim, W.K.Yun, K.H.Nam, H.C.Kim, J.C.Kim // Hum Exp Toxicol. – 2013. – № 32(6). – Р. 640 – 646.
  7. Luo J.C. Decreased lung function associated with occupational exposure to epichlorohydrin and the modification effects of glutathione s-transferase polymorphisms / J.C. Luo, T.J. Cheng, H.W. Kuo, M.J. Chang // J Occup Environ Med. – 2004. – № 46(3). – Р. 280 – 286.
  8. Mehra R. Memory restorative ability of clioquinol in copper-cholesterol-induced experimental dementia in mice / R.Mehra, R.K.Sodhi, N.Aggarwal // Pharm Biol. – 2015. – № 9. – Р. 1 – 10.
  9. Moolla R. Occupational Exposure of Diesel Station Workers to BTEX Compounds at a Bus Depot. / R. Moolla, C.J. Curtis, J. Knight // Int J Environ Res Public Health. – 2015. – № 12(4). – Р. 4101 – 4115.
  10. Shin I.S. One-generation reproductive toxicity study of epichlorohydrin in Sprague-Dawley rats / I.S.Shin, N.H.Park, J.C.Lee, K.H.Kim, C.Moon, S.H.Kim, D.H.Shin, S.C.Park, H.Y.Kim, J.C.Kim // Drug Chem Toxicol. – 2010. – № 33(3). – 291 – 301