Микрофлора почвы. Почвенные микроорганизмы Бактерии гниения живущие в почве

Многочисленные организмы, населяющие почву, представлены микроорганизмами (бактерии, грибы, актиномицеты, водоросли), позвоночными и беспозвоночными животными. Обычно микроорганизмы концентрируются в самых верхних слоях почвы, куда поступает основная масса органических остатков. В толще микроорганизмы сосредоточены около корней живых растений (в ризосфере).

Роль микроорганизмов в почвообразовании исключительно велика 1)они являются тем активным фактором, с деятельностью которого связаны процессы разложения органических веществ и превращения в почвенный перегной. Микроорганизмы осуществляют ассимиляцию атмосферного азота. Они выделяют биологические вещества, необходимые для синтеза ферментов и белков, витамины, ростовые и другие вещества, являются активнейшим фактором биологического круговорота веществ.

Различные виды микроорганизмов, продуцируя и выделяя во внешнюю среду тот или иной фермент, могут участвовать в узком кругу реакций разрушения и синтеза, определяемых каталитическими свойствами фермента. От деятельности микроорганизмов зависит поступление в почвенный раствор элементов питания растений, а следовательно, плодородие почвы. Микроорганизмы вследствие кратковременности их жизненного цикла и высокой размножаемости сравнительно быстро обогащают почву значительным количеством органического вещества, весьма богатого белком.

По подсчетам И.В.Тюрина, ежегодное поступление в почву сухого микробного вещества может составить до 0,6 т/га. Эта биомасса, богатая протеинами, содержащая много азота, фосфора, калия, имеет большое значение для почвообразования и формирования плодородия почвы.

Бактерии. Среди микроорганизмов почвы бактерии представлены наиболее широко. Вес живой массы их в пахотном горизонте составляет от 3 до 6-7 т/га.

Количество бактерий в почве зависит от ее типа и культурного состояния. Обычно с глубиной численность бактерий уменьшается. Особенно их много в поверхностных горизонтах почв, богатых органическим веществом.



По способу питания бактерии делятся на автотрофные и гетеротрофные.

Автотрофные бактерии усваивают углерод из углекислого газа. Для превращения углерода СО 2 в органические соединения своего тела они используют или энергию солнца (фотосинтез), или химическую энергию окисления некоторых минеральных веществ (хемосинтез). Способностью к фотосинтезу обладает небольшая группа цветных бактерий (зеленые и пурпурные серобактерии), в составе которых находятся фотосинтезирующие пигменты. Эти бактерии – типичные водные организмы. Хемосинтезирующие бактерии широко распространены в почвах. К ним принадлежат нитрифицирующие бактерии, железобактерии, бесцветные серобактерии, водородные и тионовые бактерии.

Гетеротрофные бактерии усваивают углерод готовых органических соединений. Эти бактерии широко встречаются в природе и отличаются специфическим отношением к источникам углерода. Определенные физиологические группы бактерий могут употреблять отдельные органические вещества как источник пищи и энергии, другие же органические соединения могут быть для них непригодными.

Такая специализация по отношению к источникам углерода позволяет вовлекать в биологический круговорот все доступные организмам соединения углерода.

Автотрофные и гетеротрофные бактерии неодинаково относятся к источникам азотного питания. Одни способны фиксировать атмосферный азот (азотфиксаторы), другие усваивают только аммиачный азот (нитрофикаторы), третьи – азот белковых соединений (аммонификаторы).

Для бактерий необходимы также зольные элементы питания (фосфор, калий, сера, кальций, микроэлементы и др.).

По типу дыхания бактерии делятся на аэробные, требующие свободного (молекулярного) кислорода, и анаэробные, не нуждающиеся в нем. Среди анаэробных бактерий встречаются облигатные, развивающиеся без молекулярного кислорода, и условные (факультативные), которые могут жить как без свободного кислорода, так и при его наличии.

Среди бактерий встречаются спороносные и неспороносные виды. Неспороносные бактерии, обладающие менее мощным ферментативным аппаратом, составляют основу ризосферой микрофлоры. Спороносные бактерии способны разрушать более стойкие органические соединения, вследствие чего они в значительных количествах находятся в более глубоких горизонтах почвы.

Подавляющее большинство бактерий лучше всего развивается при нейтральной реакции среды.

Актиномицеты (плесневидные бактерии или лучистые грибы) содержатся в почвах в меньших количествах, чем бактерии, но они очень разнообразны и им принадлежит большая роль в протекающих процессах. Все актиномицеты – аэробные организмы, преимущественно сапрофиты, предпочитают нейтральную реакцию почв. Многие актиномицеты хорошо разлагают клетчатку, лигнин, парафины и воска, а также гумусовые вещества почв с высвобождением содержащихся в них питательных для растений элементов. Некоторые актиномицеты выделяют антибиотики (стрептомицин и др.).

Грибы – это сапрофитные гетеротрофные организмы. В почвах наиболее распространены плесневидные грибы. Эти грибы, имея ветвящийся мицелий, густо переплетают органические остатки в почве. В аэробных условиях они разлагают клетчатку, лигнин, жиры, белки и другие органические соединения. Они участвуют в минерализации гумуса.

Многие почвенные грибы вступают в симбиотические взаимоотношения с растениями, образуя внутреннюю или внешнюю микоризы. Особенно микоризное развитие грибов характерно для древесных и кустарниковых видов растительности. В этом симбиозе гриб получает от растения углеродное питание, а сам обеспечивает растение азотом, образующимся при разложении азотсодержащих органических соединений почвы.

Установлено, что некоторые зеленые растения, особенно из древесных пород, лишенные микоризы, развиваются слабо или совершенно не растут. Поэтому при разведении древесных пород на новых местах в почву вносят соответствующую микоризу (путем обогащения микоризной землей или применением специальных микоризных препаратов).

Водоросли распространены во всех почвах, главным образом в поверхностном слое. Содержат в своих клетках хлорофилл. Благодаря этому водоросли способны ассимилировать углекислый газ. Различают три типа водорослей: зеленые; сине-зеленые и диатомовые.

Жизнедеятельность водорослей зависит от условий увлажнения почвы. В процессе жизнедеятельности они выделяют кислород, поддерживая высокий уровень окислительных процессов. Водоросли оказывают влияние и на азотный режим в почвах. Имеются виды их, способные ассимилировать атмосферный азот. Кроме того, в слизи, окружающей клетки водоросли, хорошо приживается и активно действует азотобактер, фиксирующий атмосферный азот.

Водоросли активно участвуют в процессах выветривания пород и в первичном процессе почвообразования. В сильнокислой и сильнощелочной средах развитие водорослей подавляется.

Лишайники в природе обычно развиты на бедных почвах, на каменистых субстратах, в сосновых борах, в тундре, в пустыне. В благоприятных условиях они вытесняются другими видами растений.

Лишайники состоят из гриба и водоросли, т.е. имеет место симбиоз гриба и водоросли. Гриб обеспечивает водоросли водой и растворенными в ней минеральными веществами; водоросли же вырабатывают углеводы, которые используют гриб. По морфологическим признакам различают лишайники накипные или корковые (эпилитические), проникающие в породу только гифами и развивающие слоевища на ее поверхности, и эндолитические, развивающие и гифы, и слоевища в породе; на поверхность у них выходят только перитеции – плодовые тела. Лишайники разрушают породу биохимически, путем растворения, и механически, при помощи гифов и слоевищ, прочно срастающихся с поверхностью. При отмирании лишайника слоевище отрывается с захватом тонкой пленки породы. Слагающий эту пленку мелкозем, сносимый к подножию скал, в расщелины и различные понижения, и является первичной почвой, на которой поселяются высшие зеленые растения.

С момента поселения лишайников на горных породах начинается более интенсивное биологическое выветривание и первичное почвообразование, в результате формируется почва, в которой накапливаются фосфор, сера, калий, кальций, азот и другие элементы.

Почва – среда обитания многих видов микроорганизмов и один из крупнейших резервуаров их в природе. Микробы встречаются в почвах различных поясов земли от Крайнего севера до тропиков.

Из структурных частей почвы для микробиологии особый интерес представляет ее органическое вещество – гумус, состоящий из остатков животных и растительных организмов и обитающих в почве микробов. Поверхностный слой почвы беднее микробами, так как на них вредно воздействуют факторы внешней среды: высушивание, ультрафиолетовые лучи, солнечный свет, повышенная температура и др.

Наибольшее количество микроорганизмов находится на глубине 5-15 см, меньше их на глубине 20-30 и еще меньше на глубине 30-40 см. Почвы, богатые бактериями, биологически более активны. Между плодородием почвы и содержанием в ней микроорганизмов имеется определенная зависимость. Подсчеты показали, что на каждый гектар малоплодородной почвы приходится 2,5-3,0 т микробной массы, высокоплодородной – до 16 т. Число микроорганизмов в 1 г почвы может колебаться от 1-3 х10 6 до

Наиболее богаты микрофлорой возделываемые (культурные) почвы; бедны – песчаные, горные и почвы лишенные растительности; содержание микробов в почве увеличивается с севера на юг. Цвет и запах придают определенные виды актиномицетов. К типичным почвенным бактериям относятся Bac.subtilis, Bac.mycoides, Bac.mesentericus, Cl. histolyticus, Cl.botulinum, Cl.chauvoei, а также термофильные, пигментные и другие микроорганизмы, составляющие иногда 80-90% всей микрофлоры почвы.

В ряде случаев почва представляет резервуар для некоторых патогенных микробов, попадающих с выделениями больных животных или трупами. Длительность выживаемости в почве патогенных бактерий зависит от их биологических свойств и условий среды обитания. Наиболее длительно живут спорообразующие микробы – возбудители столбняка, злокачественного отека, ботулизма; споры бацилл сибирской язвы могут сохраняться десятилетиями. При благоприятных условиях микробы в почве могут не только выживать, но и долго (недели, месяцы и даже годы) сохранять вирулентные свойства.

Для общей оценки санитарного состояния почвы основное значение имеет наличие E.coli, так как сроки выживания кишечной палочки приблизительно равны срокам выживания других патогенных представителей. С этой же целью проводят индикацию Ent.faecalis, Cl.perfringens, Bact.thermophylus.

С микроорганизмами связаны все биохимические процессы в почве. В аэробных условиях размножение доходит до полной минерализации остатков с образованием окисленных соединений простого состава, в анаэробных – образуются газообразные вещества и промежуточные продукты в виде органических кислот.

Микрофлору почвы делят на автохтонную (от лат. autochthonous – местная, коренная), которая усваивает гумусовые вещества непосредственно из почвы, и сапрофитную, или зимогенную (от лат. zimogenic – возбуждающие брожение), которая разлагает органические соединения, поступающие в почву извне. К автохтонным относятся представители родов Pseudomonas, Bacterium, Mycobacterium, Bactoderma, Clostridium, а также грибы – Penicillium, Aspergillus. В составе зимогенной микрофлоры преобладают бактерии, особенно неспорообразующие формы, родовую принадлежность которых установить довольно трудно.

В качестве эктосимбионта микроорганизмы обитают в почве, непосредственно окружающей корни растений. Участки почвы, непосредственно окружающие корни растения, вместе с поверхностью корней составляют ризосферу растения . В функциональном смысле ее можно определить как область, лежащую в пределах нескольких миллиметров от поверхности каждого корня, в которой химическая активность растения влияет на микробную популяцию. Это влияние в основном проявляется в количественном отношении: число бактерий в ризосфере обычно превышает их число в окружающей почве в 10, а часто и в несколько сотен раз. Наблюдаются также и качественные изменения. В ризосфере преобладают короткие грамотрицательные палочки, тогда как грамположительные палочковидные и кокковидные формы встречаются здесь реже, чем в остальной части почвы. Однако не установлено никаких специфических ассоциаций конкретных бактериальных видов с конкретным растением.

Причина относительного обилия бактерий в ризосфере, несомненно, кроется в том, что корни растений выделяют органические питательные вещества, которые избирательно стимулируют рост бактерий с определенными типами питания. Однако не установлено никаких четких трофических взаимосвязей, хотя многие органические продукты, выделяемые корнями растений, уже идентифицированы. Остается также неясным, извлекает ли растение какую-либо пользу из ассоциации с микроорганизмами. Однако известно, что многие свободноживущие почвенные бактерии выполняют необходимые для растений функции, такие как фиксация азота и минерализация органических соединений. Поэтому логично предположить, что некоторые растения выигрывают от тесного контакта с микроорганизмами.

Микрофлора воды

Вода – естественная среда обитания микробов. С точки зрения ветеринарной медицины имеет значение качество питьевой воды для животных, которая должна отвечать требованиям питьевой воды для человека и специально установленным требованиям. С точки зрения ветеринарной микробиологии питьевая вода для животных не должна содержать какие-либо патогенные бактерии, а количество сапрофитных микробов должно быть минимальным. Загрязненная вода представляет опасность, она может быть фактором передачи болезней.

Атмосферная, еще не сконденсировавшаяся, вода практически не содержит бактерий. В осадках (дождь, снег, град) в момент попадания на поверхность земли часто уже можно обнаружить бактерии и тем больше, чем теснее контакт осадков с частицами пыли в воздухе. При этом содержание бактерий находится в интервале от менее 10 до нескольких сотен в 1 см 3 . Осадки, попавшие с поверхности в сток, могут быть особенно обсеменены микробами на первом участке стока. Часто содержание бактерий в стоках с участков земли, используемой в сельском хозяйстве, составляет от нескольких сотен до миллиона в 1 см 3 . Осадки, попавшие с поверхности в сток, могут быть особенно обсеменены микробами на первом участке стока.

Образующиеся потоки в зависимости от наплыва воды содержат резко отличающиеся друг от друга количества бактерий. В неподвергавшихся внешнему воздействию средних и нижних слоях потоков и в бурных течениях количество бактерий снова уменьшается, так как здесь могут действовать многочисленные факторы, способствующие уменьшению содержания бактерий: разбавление водой источников с небольшим содержанием бактерий, седиментация крупных органических частиц и гибель вегетативных форм бактерий.

Факторы самоочищения тем эффективнее, чем дольше воздействие седиментации, активности других микроорганизмов, температуры, солнечного света, токсических продуктов обмена веществ, органического запаса питательных веществ, недостатка кислорода и других факторов, которые способствуют уменьшению содержания бактерий в природных и искусственных водоемах. Микрофлора водоема в естественных условиях вписывается в установившееся биологическое равновесие. Микроорганизмы играют важную роль в минерализации органических веществ в воде и, таким образом, являются важным звеном в круговороте веществ в природе. Количество автохтонных бактерий (самостоятельная, первоначально существующая микрофлора, для которой вода является естественной средой обитания) составляет от нескольких сотен до 1000 бактерий в 1 см 3 воды. Особенно большое количество бактерий находится на поверхности ила.

Различные атмосферные осадки питают подземные грунтовые воды. В результате фильтрации и адсорбции в грунте удерживаются не только проникающие бактерии, но и питательные вещества. В собственно грунтовых водах количество бактерий в 1 см 3 изменяется в интервале от менее 10-ти до нескольких сотен. Лишь изредка встречаются грунтовые воды, полностью свободные от бактерий. Доминируют здесь очень медленно размножающиеся формы, которые во многих случаях обусловливают условную стерильность воды.

Вода во всех своих формах представляет вторичный биоток, в котором в естественных условиях может устанавливаться биологическое равновесие. Чуждые бактерии (аллохтонные), которые попадают в воду из грунта, из загнивающих растений и в особенности из сточных вод в виде аллохтонных намывов, приобретают решающее гигиеническое значение при использовании воды в качестве питьевой или даже в хозяйственных целях.

К постоянно живущим в воде микроорганизмам относятся: Azotobacter,

Nitrobacter, Microccus roseus, Pseudomonas fluorescens, Bact.aquatalis, Proteus vulgaris, Spirillum и др. Кроме сапрофитов, в воде могут быть возбудители инфекционных болезней животных и человека.

Определить конкретного возбудителя сложно, поэтому санитарную оценку воды дают по наличию в ней кишечной палочки (E.coli). Кроме того, определяют бродильный титр, микробное число, коли-титр и коли-индекс воды, титр фекального стрептококка (Ent.faecalis), который является постоянным обитателем кишечника животных и человека.

Для бактериального исследования отбирают 400-500 мл воды в стерильную бутыль, которую наполняют на ¾ объема и закрывают стерильной пробкой. Из открытых водоемов пробы воды берут на глубине 10-15 мин от поверхности, а из мелких - на уровне 10-15 см от дна. Из водопровода предварительно в течение 10 мин спускают воду, обжигают кран, а затем берут пробу, пробы воды доставляют в лабораторию не позднее чем через 4 ч после взятия.

Бродильный титр - наименьший объем воды, при посеве которого в глюкозную среду обнаруживается газообразование.

Общее микробное число или количество МАФАнМ устанавливают по количеству микроорганизмов, содержащихся в 1 мл воды. Водопроводная вода считается пригодной для питья, если общее число микробов в 1 мл не более 100, сомнительной – 100-150, загрязненной - 500 микробов и более. В воде колодцев и открытых водоемов в 1 мл не должно быть более 1 тыс. микробов. Степень биологического загрязнения оценивают по коли-титру и коли-индексу. Коли-титром называется наименьший объем воды в миллилитрах или сухого вещества в граммах, в котором обнаруживается хотя бы одна кишечная палочка. Бродильный титр соответствует коли-титру в том случае, если сбраживание глюкозы вызывает E.coli, а не другие микроорганизмы.

Коли-индексом называется число кишечных палочек, обнаруженных в 1 л воды. По существующим нормативам вода считается качественной, если коли-индекс ее не более 3, а коли-титр не менее 300. Вода шахтных колодцев должна иметь коли-индекс не более 10, а коли-титр не менее 100. Для перевода коли-титра в коли-индекс 1000 делят на показатель коли-титра, а для перевода коли-индекса в коли-титр 1000 делят на число, выражающее коли-индекс.

Микрофлора воздуха

Источником контаминации воздуха микроорганизмами служат поверхность почвы, вода, организм животных и человека. Воздух является неблагоприятной средой для размножения микроорганизмов. На выживаемость микробов в воздухе влияют различные факторы. Отсутствие питательных веществ, солнечные лучи и высушивание обусловливают быструю гибель микроорганизмов в воздухе. Вследствие этого микрофлора воздуха не так обильна, как микрофлора почвы и воды.

Количественный и качественный состав микрофлоры атмосферного воздуха претерпевает значительные колебания в зависимости от сезона года, климатических и метеорологических условий, а также характера почвы, удаления от поверхности почвы и общего санитарного состояния территории. Максимальное количество микробов обнаруживают в июне-августе, а минимальное – в декабре-январе; доля спорообразующих бактерий (процентное содержание) больше в зимнее время. Ветры способствуют обогащению воздуха микробами. Атмосферные осадки (дождь, снег) при прохождении через воздушные слои растворяют и адсорбируют находящиеся в воздухе взвешенные частицы с микробными клетками. В 1 мл дождевой воды, выпадающей в больших городах, содержатся тысячи бактерий, значительное количество микроорганизмов содержит также снег.

Основную массу микробов воздуха составляют сапрофитные виды, состав которых формируется в основном за счет почвенных микробов. В естественных условиях в воздухе обнаружено около 1200 видов бактерий и актиномицетов, около 40000 видов грибов, мхов, папортников и др. В поверхностных слоях атмосферы преобладают плесени, вблизи земли преобладают бактериальные формы. Более часто из воздуха выделяют: Bac.subtilis, Bac. мegatherium, Bac.mycoides, Micrococcus candicans, M. flavus, Staphylococcus aureus, St. citreus, Sarcina alba, Torula alba, Penicillium, Aspergillus, Mucor, Actinomyces и др.

Вместе с пылью в воздух могут попадать патогенные микроорганизмы, выделяемые человеком и животными. В витающей пыли обнаруживают споры плесени и пигментные микробы, в осевшей пыли – анаэробы и споровые аэробы. Воздух имеет большое значение как фактор передачи возбудителей инфекционных болезней с воздушно-капельным механизмом передачи.

В животноводческих помещениях аэрозоли возникают при кашле, отфыркивании, быстром перемещении животных, во время раздачи кормов, особенно грубых, а также при чихании, кашле, разговоре обслуживающего персонала. Доказано, что в 1 м 3 воздуха животноводческих помещений содержится до 2 млн. микробных клеток, иногда более, в том числе патогенных. Степень обсемененности воздуха микроорганизмами зависит от вентиляции, скученности животных, вида помещений, способа содержания животных и раздачи сухих кормов. В помещениях с плохой вентиляцией число микробов в 1 м 3 воздуха в 5-6 раз больше, чем в хорошо вентилируемых помещениях.

Санитарное состояние воздуха оценивается по микробному числу – количеству микроорганизмов, обнаруженных в 1 м 3 атмосферного воздуха, а в помещениях для животных (коровниках, свинарниках, птичниках, крольчатниках) мясо- и птицекомбинатов – по микробному числу и наличию санитарно-показательных микробов.

Бактериологическое исследование воздуха осуществляется с использованием седиментационных, аспирационно-фильтрационных (сорбционных) методов, основанных на осаждении микроорганизмов из воздуха на поверхности твердых питательных сред или задержке их в жидкой среде путем сифонирования и барботажа.

Допустимые санитарно-бактериологические показатели для воздуха животноводческих помещений не должны превышать 500-1000 бактерий

Многочисленные организмы, населяющие почву, представлены микроорганизмами (бактерии, грибы, актиномицеты, водоросли), позвоночными и беспозвоночными животными. Обычно микроорганизмы концентрируются в самых верхних слоях почвы, куда поступает основная масса органических остатков. В толще микроорганизмы сосредоточены около корней живых растений (в ризосфере).

Роль микроорганизмов в почвообразовании исключительно велика 1)они являются тем активным фактором, с деятельностью которого связаны процессы разложения органических веществ и превращения в почвенный перегной. Микроорганизмы осуществляют ассимиляцию атмосферного азота. Они выделяют биологические вещества, необходимые для синтеза ферментов и белков, витамины, ростовые и другие вещества, являются активнейшим фактором биологического круговорота веществ.

Различные виды микроорганизмов, продуцируя и выделяя во внешнюю среду тот или иной фермент, могут участвовать в узком кругу реакций разрушения и синтеза, определяемых каталитическими свойствами фермента. От деятельности микроорганизмов зависит поступление в почвенный раствор элементов питания растений, а следовательно, плодородие почвы. Микроорганизмы вследствие кратковременности их жизненного цикла и высокой размножаемости сравнительно быстро обогащают почву значительным количеством органического вещества, весьма богатого белком.

По подсчетам И.В.Тюрина, ежегодное поступление в почву сухого микробного вещества может составить до 0,6 т/га. Эта биомасса, богатая протеинами, содержащая много азота, фосфора, калия, имеет большое значение для почвообразования и формирования плодородия почвы.

Бактерии. Среди микроорганизмов почвы бактерии представлены наиболее широко. Вес живой массы их в пахотном горизонте составляет от 3 до 6-7 т/га.

Количество бактерий в почве зависит от ее типа и культурного состояния. Обычно с глубиной численность бактерий уменьшается. Особенно их много в поверхностных горизонтах почв, богатых органическим веществом.

По способу питания бактерии делятся на автотрофные и гетеротрофные.

Автотрофные бактерии усваивают углерод из углекислого газа. Для превращения углерода СО 2 в органические соединения своего тела они используют или энергию солнца (фотосинтез), или химическую энергию окисления некоторых минеральных веществ (хемосинтез). Способностью к фотосинтезу обладает небольшая группа цветных бактерий (зеленые и пурпурные серобактерии), в составе которых находятся фотосинтезирующие пигменты. Эти бактерии – типичные водные организмы. Хемосинтезирующие бактерии широко распространены в почвах. К ним принадлежат нитрифицирующие бактерии, железобактерии, бесцветные серобактерии, водородные и тионовые бактерии.

Гетеротрофные бактерии усваивают углерод готовых органических соединений. Эти бактерии широко встречаются в природе и отличаются специфическим отношением к источникам углерода. Определенные физиологические группы бактерий могут употреблять отдельные органические вещества как источник пищи и энергии, другие же органические соединения могут быть для них непригодными.

Такая специализация по отношению к источникам углерода позволяет вовлекать в биологический круговорот все доступные организмам соединения углерода.

Автотрофные и гетеротрофные бактерии неодинаково относятся к источникам азотного питания. Одни способны фиксировать атмосферный азот (азотфиксаторы), другие усваивают только аммиачный азот (нитрофикаторы), третьи – азот белковых соединений (аммонификаторы).

Для бактерий необходимы также зольные элементы питания (фосфор, калий, сера, кальций, микроэлементы и др.).

По типу дыхания бактерии делятся на аэробные, требующие свободного (молекулярного) кислорода, и анаэробные, не нуждающиеся в нем. Среди анаэробных бактерий встречаются облигатные, развивающиеся без молекулярного кислорода, и условные (факультативные), которые могут жить как без свободного кислорода, так и при его наличии.

Среди бактерий встречаются спороносные и неспороносные виды. Неспороносные бактерии, обладающие менее мощным ферментативным аппаратом, составляют основу ризосферой микрофлоры. Спороносные бактерии способны разрушать более стойкие органические соединения, вследствие чего они в значительных количествах находятся в более глубоких горизонтах почвы.

Подавляющее большинство бактерий лучше всего развивается при нейтральной реакции среды.

Актиномицеты (плесневидные бактерии или лучистые грибы) содержатся в почвах в меньших количествах, чем бактерии, но они очень разнообразны и им принадлежит большая роль в протекающих процессах. Все актиномицеты – аэробные организмы, преимущественно сапрофиты, предпочитают нейтральную реакцию почв. Многие актиномицеты хорошо разлагают клетчатку, лигнин, парафины и воска, а также гумусовые вещества почв с высвобождением содержащихся в них питательных для растений элементов. Некоторые актиномицеты выделяют антибиотики (стрептомицин и др.).

Грибы – это сапрофитные гетеротрофные организмы. В почвах наиболее распространены плесневидные грибы. Эти грибы, имея ветвящийся мицелий, густо переплетают органические остатки в почве. В аэробных условиях они разлагают клетчатку, лигнин, жиры, белки и другие органические соединения. Они участвуют в минерализации гумуса.

Многие почвенные грибы вступают в симбиотические взаимоотношения с растениями, образуя внутреннюю или внешнюю микоризы. Особенно микоризное развитие грибов характерно для древесных и кустарниковых видов растительности. В этом симбиозе гриб получает от растения углеродное питание, а сам обеспечивает растение азотом, образующимся при разложении азотсодержащих органических соединений почвы.

Установлено, что некоторые зеленые растения, особенно из древесных пород, лишенные микоризы, развиваются слабо или совершенно не растут. Поэтому при разведении древесных пород на новых местах в почву вносят соответствующую микоризу (путем обогащения микоризной землей или применением специальных микоризных препаратов).

Водоросли распространены во всех почвах, главным образом в поверхностном слое. Содержат в своих клетках хлорофилл. Благодаря этому водоросли способны ассимилировать углекислый газ. Различают три типа водорослей: зеленые; сине-зеленые и диатомовые.

Жизнедеятельность водорослей зависит от условий увлажнения почвы. В процессе жизнедеятельности они выделяют кислород, поддерживая высокий уровень окислительных процессов. Водоросли оказывают влияние и на азотный режим в почвах. Имеются виды их, способные ассимилировать атмосферный азот. Кроме того, в слизи, окружающей клетки водоросли, хорошо приживается и активно действует азотобактер, фиксирующий атмосферный азот.

Водоросли активно участвуют в процессах выветривания пород и в первичном процессе почвообразования. В сильнокислой и сильнощелочной средах развитие водорослей подавляется.

Лишайники в природе обычно развиты на бедных почвах, на каменистых субстратах, в сосновых борах, в тундре, в пустыне. В благоприятных условиях они вытесняются другими видами растений.

Лишайники состоят из гриба и водоросли, т.е. имеет место симбиоз гриба и водоросли. Гриб обеспечивает водоросли водой и растворенными в ней минеральными веществами; водоросли же вырабатывают углеводы, которые используют гриб. По морфологическим признакам различают лишайники накипные или корковые (эпилитические), проникающие в породу только гифами и развивающие слоевища на ее поверхности, и эндолитические, развивающие и гифы, и слоевища в породе; на поверхность у них выходят только перитеции – плодовые тела. Лишайники разрушают породу биохимически, путем растворения, и механически, при помощи гифов и слоевищ, прочно срастающихся с поверхностью. При отмирании лишайника слоевище отрывается с захватом тонкой пленки породы. Слагающий эту пленку мелкозем, сносимый к подножию скал, в расщелины и различные понижения, и является первичной почвой, на которой поселяются высшие зеленые растения.

С момента поселения лишайников на горных породах начинается более интенсивное биологическое выветривание и первичное почвообразование, в результате формируется почва, в которой накапливаются фосфор, сера, калий, кальций, азот и другие элементы.

Почва представляет собой одно из главных биокосных тел биосферы, в котором плотность жизни весьма велика, а геохимическая деятельность микроорганизмов определяет многие геохимические процессы не только в самой почве, но в геохимически связанных с нею в единую систему компонентах.

Численность микроорганизмов в почвах и в почвообразующих породах, несмотря на значительные ее колебания (основываясь на средних цифрах из большого количества наблюдений), имеет некоторые закономерности. Если при исследовании разных типов почв пользоваться одной методикой (прямой подсчет, электронно-микроскопический метод и другие), то можно получить сопоставимые результаты.

Подсчет общего количества микроорганизмов в различных типах почв при посеве на питательные среды дает самые низкие показатели численности микроорганизмов.

Применение прямого микроскопического метода С. Н. Виноградского для установления численности микроорганизмов в почвах позволяет учесть почти на три порядка больше бактериальных клеток, чем при посевах на питательные среды.

В последние годы для увеличения количества учитываемых клеток микроорганизмов стали широко использовать обработку почвенных образцов ультразвуком, что дает возможность учитывать и адсорбированные клетки; в черноземе, обработаном ультразвуком, в 1 г почвы содержалось микроорганизмов в 8,5 раз больше, чем в дерново-подзолистой почве.

Определение численности микроорганизмов в 1 г почвы н дает возможности вскрыть специфику количественного распре деления микроорганизмов по почвенным типам. Целесообразнее учитывать их количество на единицу площади.

Распределение микроорганизмов по горизонтам почв и в ризосфере обусловлено содержанием гумуса, живых корней органических остатков, механическим составом, ОВ-потенциалом. В подзолистой почве наблюдается скачкообразное распре деление бактерий, что связано с резким убыванием гумуса при переходе от одного горизонта к другому. В черноземе, где содержание гумуса снижается постепенно, численность микроорганизмов по профилю уменьшается относительно равномерно. Даже на одном горизонте на одной и той же глубине количество микроорганизмов существенно различно непосредственно вблизи корней и в остальной почвенной массе. Выделения корней, а также их отмершие остатки являются источником энергетического вещества для бактериальной микрофлоры. При подсчете микроорганизмов различными методами во всех случаях отмечается явное возрастание их обилия от тундровых почв к подзолистым и черноземам, в каштановых почвах и сероземах оно несколько снижается.

Микроорганизмы пронизывают не только всю почвенную толщу, но и проникают в материнскую породу (Звягинцев, 1973; Хлебникова, 1980; и др.). На основании изучения биологической активности почв и подпочвенных горизонтов, рыхлых отложений до глубины 7-13 м установлено, что микроорганизмы постоянно присутствуют в подстилающих почву породах в количестве 10 11 -10 12 кл. на 1 см 2 , или 40- 100 млн. кл/г (по результатам люминесцентного микроскопического метода) и 10 6 -10 8 кл. на 1 см 2 , или 10 тыс. - 1 млн. кл/г (по данным посева), что всего лишь на порядок меньше, чем в почвенном профиле. Численность микроорганизмов снижается до определенной глубины почвенного профиля, а за ее пределами этого не наблюдается.

При сравнении численности бактерий подпочвенных горизонтов, природных вод и почв было отмечено, что в породах их в 100-5000 раз меньше, чем в почве, но значительно больше, чем в природных водах и морях (Хлебникова, 1980). Илистая фракция рыхлых почвообразующих пород обладает, как оказалось, такой же ферментативной активностью, как и почва.

Активная деятельность микроорганизмов проявляется в определенных экологических микронишах: ризосфера, остатки растений и животных (в том числе и микронаселения почвы), некоторые минералы.

Размеры экологических микрониш обусловлены структурой и измельченностью субстрата, непостоянны, так как постепенное истощение запасов пищи в них и накопление продуктов распада приводит либо к гибели, либо к переселению микроорганизмов в другие места, часто вместе со своими нишам (благодаря почвенной фауне, движению воздуха, воды ил подвижности самих микроорганизмов).

На специфику распределения микроорганизмов в почве, я микроочаговость заметно влияет адсорбция, благодаря которой они удерживаются в конкретном почвенном горизонте. Большинство микроорганизмов, обитающих в почве, на поверхности скальных пород и минералов, в грунтах и ряде других естественных субстратов, находятся в адсорбированном состоянии.

К настоящему времени выполнено много работ по изучению адсорбции микроорганизмов и их активности в адсорбированом состоянии. Для изучения адсорбции и активности микроорганизмов на веществах, не обладающих оптической прозрачностью, применен метод люминесцентной микроскопии (Звягинцев, 1977). Адсорбция установлена для самых различных групп микроорганизмов; споровых и неспоровых, грамотрицательных и грамположительных бактерий, проактиномицетов, актиномицетов, дрожжей, водорослей, грибов, микоплазм и др. Она зависит от подверженности микроорганизмов адсорбции, свойств адсорбента, химических и физических свойств среды, в которой происходит адсорбция, а также от условий, определяющих возможности контакта между бактериальными клетками и частицами.

Наличие в среде катионов способствует адсорбции микроорганизмов; она увеличивается от меньшей валентности катионов к большей. Влияет на нее и наличие органического вещества. Наибольшее количество клеток адсорбируют черноземы, перегнойно-глеевые почвы (до 90%), меньшее - дерново-подзолистые, серые и бурые лесные почвы (до 50-60%), среднее - каштановые почвы, красноземы и сероземы. Она происходит в широком диапазоне pH и обычно меньше в щелочной среде. Адсорбированные клетки могут сохранять свою подвижность и часто даже передвигают почвенные частицы малого диаметра. С уменьшением размеров частиц адсорбция микроорганизмов возрастает, последнее связано с увеличением удельной поверхности адсорбента на единицу массы и способностью мелких частиц образовывать агрегаты с клетками микроорганизмов, так как во фракции <0,01 мм растет относительное содержание вторичных минералов, полуторных окислов, а также органических коллоидов.

Группы микроорганизмов распределены по почвенным частицам разных размеров неравномерно: бактерии есть почти на всех частицах, а актиномицеты и грибы приурочены к более крупным. Прикрепление клеток к твердым частицам происходит с помощью различных органоидов (выростов, фимбрий, капсул, но не жгутиков) и может быть довольно прочным.

Изучение адсорбции подтвердило положение об очаговости распространения микроорганизмов в почве (Красильников, 1958), а также о наличии среди почвенных микроорганизмов обитателей почвенного раствора (некоторые грамотрицательные бактерии) (Takietal, 1970) и обитателей только твердой фазы; грибы и актиномицеты сосредоточены на твердых частицах. В дерново-подзолистых почвах Подмосковья они распределены следующим образом (Новогрудский, 1956):

Развитие микроорганизмов в почвах, илах, грунтах обычно происходит в капиллярах, заполненных почвенным раствором или в тонких водных пленках. В тонких капиллярах и тонких пленках размножение клеток различных микроорганизмов идет гораздо медленнее и размеры клеток меньше, чем в толстых (Звягинцева, 1973). По-видимому, на микроорганизмы, расположенные в капиллярах и пленках, кроме большой адсорбционной поверхности оказывают влияние распределение — веществ и их диффузия, специфика форм и строение воды и др.

Состав микрофлоры изменяется по профилю почвы: наиболее быстро исчезают с глубиной водоросли, затем грибы и актиномицеты; в нижних горизонтах они встречаются обычно в виде стерильных форм. Вниз по профилю исчезают спороносные бактерии и псевдомонады; наблюдается увеличение количества психрофильных или психротолерантных микроорганизмов, уменьшаются размеры клеток. Численность аэробов и анаэробов в нижних горизонтах примерно одинакова.

В некоторых почвах отмечаются два максимума микроорганизмов (целинные сероземы около Ташкента, некоторые поливные и песчаные почвы Казахстана), оглеенные лесные почвы.

Микрофлора различных почв изучалась многими микробиологами. Е. Н. Мишустин (1978) исследовал эколого-географическое распространение бактерий на отдельных видах и установил доминирование определенных видов спорообразующш бактерий в разных типах почв. Для Крайнего Севера, например, характерна группировка Bacillus agglomeratus и Вас. сеreus, в почвах средней полосы СССР и подзолах преобладают Вас. mycoides и Вас. cereus; Вас. virgulus приурочен в основном к лесным почвам, а в черноземах в больших количествам присутствуют Вас. idosus и Вас. megaterium; каштановые и сероземные почвы отличаются обилием Вас. mesentericus и Вас. subtilis. В почвах горных поясов была обнаружена аналогичная смена спорообразующих бациллярных форм, как и в ряду зональных равнинных почв.

Отмечено также преобладание грибов определенных видов в разных типах почв, например в северной зоне, где слабы минерализационные процессы, - грибы родов Penicillium ц Mucor, размножающиеся на субстратах с большим количестввом свежих растительных остатков. По мере продвижений к югу их вытесняют представители рода Aspergillus, в южных почвах уменьшается не только общая численность грибов рода Penicillium, но и разнообразие их видового состава. В черноземах, каштановых почвах и сероземах обильна развиваются грибы рода Fusarium, широко распространенные и в почвах тропических лесов. Некоторые грибы живут в широком диапазоне щелочно-кислотных условий и встречаются в кислых, нейтральных и щелочных почвах.

Численность актиномицетов и их видовое разнообразие возрастают с севера на юг.

Дрожжи обитают преимущественно в почвах с грубым гумусом, обилием слаборазложившихся растительных остатков, так как им необходимы простые сахара и органические кислоты; это почвы северных областей с высокой влажностью и кислой реакцией. Для разных почв характерна определенная дрожжевая микрофлора: в кислых дерново-подзолистых почвах преобладает род Candida, в тундрово-глеевых и болотных - род Cryptococcus. Таким образом, накопленный к настоящему времени материал свидетельствует об определенных эколого-географических различиях численности и состава микроорганизмов.

В течение вегетационного периода в почвах неоднократно возобновляется микробная биомасса, старые клетки отмирают, появляются новые. Скорость размножения бактерий измеряется временем, в течение которого удваивается число клеток (время одного деления или одной генерации), и зависит от вида бактерий, типа почв, гидротермических условий и др. В лабораторных условиях представители семейства Enterobacteriaceae при температуре 37° С делятся примерно через каждые 15-30 мин. У большинства бактерий время генерации значительно больше, у почвенных бактерий оно составляет 60- 150 мин, у Nitrosomonas и Nitrobacter - 5-10 ч (Шлегель, 1972). Для актиномицетов рода Streptomyces (в лабораторных условиях) спорообразование наблюдалось на 3-5 сут, у представителей рода Nocardia жизненный цикл проходит за 24 ч.

Суммируя скорости размножения, для каждого периода подъема численности можно рассчитать среднюю скорость размножения за весь вегетационный срок. По данным Н. А. Красильникова (1958), в течение месяца бактерии делятся приблизительно 2 раза; за вегетационный период на юге бактериальная масса регенерирует 14-18 раз, а в средней полосе - 6-8. В некоторых почвах за месяц образуется более двух генераций; за один июль сменяется до 10 новых поколений бактерий (Никитина, Шарабарин, 1972). Число генераций - величина непостоянная, она колеблется по горизонтам одного типа почв и по сезонам. В верхних горизонтах почв время генерации (для учитываемой на МПА) быстро растущей части почвенной микрофлоры составляет 25-50 сут. При внесении в почву чистых культур за год число генераций достигает 30.

Многие советские и зарубежные ученые на основании данных о численности бактерий, грибов, дрожжей, водорослей рассчитали микробную биомассу с учетом массы и объема микробных тел. Приведем некоторые из них. По данным С. Руссела (1955), живая бактериальная масса в пахотном слое почвы на 1 га (Ротамстед) равна 1,68-3,9 т, или в пересчете на сухую массу, 338-780 кг/га. Е. Н. Мишустин подсчитал, что в почвах различных почвенных зон СССР бактериальная масса составляет от 0,1 до 1,3 т сухого вещества микробной массы, или 0,6-5 т/га живой массы микроорганизмов. Н. А. Красильников (1958) для некоторых почв Средней Азии определил размеры живой биомассы в 7-9 т/га, а для почв Подмосковья - 4 т/га. В перегнойно-глеевых почвах (Звягинцев, 1969) вес сырой микробной массы - около 0,1% массы почвы. Степные почвы юго-восточного Забайкалья содержат 3-9 т/га бактериальной массы в слое 0-10 см (Михайлова, Никитина, 1972).

По подсчетам Т. Г. Мирчинк (1976), грибная биомасса в почвах составляет в гумусовом горизонте, кг/га: дерново-подзолистая под березняком - 500; под ельником зеленомошником - 2400; сильноподзолистая супесчаная под ельником зеленомошником - 3200, под березняком - 1600.

Дрожжевой биомассы в 1 га пахотного слоя содержится 1,4 кг (Бабьева, Решетова, 1972).

Ежегодная продукция микробной биомассы составляет десятки и сотни центнеров на 1 га в год. С бактериальными телами ежегодно поступает в почву 15-48 ц/га сухого органического вещества (Тюрин, 1946). Продукция бактерий черноземных почв Онон-Аргунской степи - 150 ц/га; в хорошо удобренных окультуренных почвах ежегодная продукция микробной массы - 200-500 ц/га (Ковда, Якушевская, 1973).

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Почвенные микроорганизмы не просто обитают в естественной гетерогенной среде, но сами являются ключевым фактором почвообразования и участвуют в процессах преобразования горной породы в почву с характерным строением. Оценивая роль микроорганизмов, Т. В. Аристовская выделила пять важнейших элементарных почвенно-микробиологических процессов: разложение растительного опада, образование гумуса, разложение гумуса, деструкция минералов почвообразующей породы и новообразование минералов. Указанные и другие функции почвенных микроорганизмов составляют как бы фундамент наземных экосистем. Относительно более подробно исследован процесс разложения органического вещества в почве.

Ежегодно при фотосинтезе связывается примерно 5 Ю 10 т атмосферного углерода, а в виде опада в почву поступает приблизительно 4 I0 10 т. Основную часть опада почвенные микроорганизмы минерализуют до углекислого газа и воды. Вместе с тем существенная часть опада превращается в гуминовые вещества (от 0,6

до 2,5-10 9 т) - особый класс природных соединений, для которых до сих пор нет точных молекулярных формул и выделение которых задается операционально (процедурой). Гуминовые вещества извлекают из почвы раствором щелочи. Затем осаждают кислотой фракцию гуминовых и гиматомелановых кислот. В растворе остаются фульвокислоты и неспецифические вещества. Нерастворимую часть называют гумином.

Все гуминовые вещества содержат большой набор функциональных групп. При их гидролизе в раствор переходят до 22 аминокислот (их массовая доля достигает 10%), разнообразные моносахариды (до 25 %) и другие соединения. Продуктами окисления являются в основном бензолполикарбоновые кислоты. Источниками аминокислот и сахаров в гуминовых веществах могут быть белки и углеводы растений и микроорганизмов, а исходным материалом для бензоидных циклов служат лигнин и флавоноиды. Некоторое представление о содержании гумуса дает окраска почвы. В сухом состоянии малогумусные почвы (не более 1,5 % гумуса) имеют светло-серый цвет. Черный или буро-черный цвет (5 - 6 % гумуса и более) сухих образцов характерен для почв с высоким уровнем плодородия (чернозем). Несмотря на то что до сих пор дискуссионными остаются многие вопросы по строению, механизмам образования и разложения гуминовых веществ, эти соединения играют исключительную роль в поддержании плодородия и других почвенных характеристик. Согласно одной из гипотез образования гумуса (П. А. Костычев, Т. Г. Мирчинк, Д. Г. Звягинцев и др.), ядра молекул гумуса представлены микробными меланинами.

Процессы разложения растительного опада (продукты фотосинтеза как основной ресурс почвенных микроорганизмов) в первом приближении удовлетворительно описывает кинетическое уравнение первого порядка:

где А, и А 0 - концентрация ресурса в момент /ив начальный момент; к - константа с размерностью обратного времени. Формально применимость такой простейшей модели предполагает, что обильный микробный потенциал не лимитирует процесс. Лабораторные и полевые эксперименты показывают, что к чаще всего не зависит от количества поступившего в почву органического вещества при условии, что нагрузка по углероду не превышает 1,5 % от массы сухой почвы (в противном случае могут существенно измениться почвенные характеристики).

Поступивший в почву органический материал содержит, как правило, разные компоненты. Определенное представление о диапазонах скоростей разложения органики в почве могут дать значения к для разных ресурсов в условиях лабораторного эксперимента: от 0,02-0,03 - для соломы, гемицеллюлозы и мертвой грибной биомассы до 0,003 сут -1 для лигнина.

Процесс разложения органики в почве существенно зависит от процентного содержания в растительном опаде углеводов (U ) и лигнина (L), а также от соотношения C/N. Примером может служить эмпирическое уравнение для индекса дыхания почвы:

Отношение C/N для почвенных бактерий варьирует обычно в диапазоне от 3: 1 до 8: 1. Для биомассы почвенных грибов максимальное значение отношения C/N выше и достигает 16. В этом отношении грибы более конкурентоспособны при разложении соединений с низким содержанием азота (например, лигнина). К тому же мицелиальная организация позволяет осуществлять перенос соединений азота по гифе как трубе (транслокация лимитирующего ресурса). Не исключено, что мицелий грибов поставляет азот в подстилку (здесь значение C/N очень высокое: 40 - 100) из нижележащего почвенного горизонта.

Общее правило заключается в следующем. Если C/N микробной массы больше C/N органического вещества, то в результате минерализации почва обогащается азотом. Это наблюдается, в частности, при разложении мертвой биомассы животных (C/N = 10) и фитомассы бобовых растений (C/N = 18). Если C/N микробной массы меньше C/N органического вещества, то в ходе иммобилизации начнется потребление минерального азота почвы. При этом общая скорость разложения может существенно снизиться, пока не погибнет часть микробной биомассы и (или) не появится дополнительный источник азота в ходе микробной атаки на почвенное органическое вещество. Указанные закономерности учитываются в классическом эмпирическом правиле внесения соломы: чтобы исключить нежелательный процесс иммобилизации ресурса в почве, к 100 кг соломы следует добавить 1 кг азота.

Сходные проблемы возникают при решении оптимизационных задач по восстановлению почвенного плодородия в ситуациях с загрязнением среды. Например, крайне сложная ситуация возникает при загрязнении почв углеводородным сырьем на нефтяных месторождениях и при авариях на нефтепроводах. При этом в силу разных причин (ухудшение водного режима в гидрофобной обстановке, выпадение растений, возрастание отношения C/N и т.д.) ингибируется активность большинства почвенных микроорганизмов. Для активизации микробных сообществ и ускорения процессов самоочищения необходимо внесение удобрений (на окисление 1 г нефти требуется примерно 80 мг азота и 8 мг фосфора) с созданием соответствующих условий по влажности и аэрации (например, путем внесения торфа, соломы и других рыхлых материалов). Помимо прочего интерес представляет интродукция микробных популяций, разлагающих нефтепродукты. Любопытной представляется возможность применения коры хвойных деревьев с природным микробным комплексом, адаптированным к природным смолам.

Процесс разложения органического вещества в почве зависит от влажности, температуры, pH, окислительно-восстановительного потенциала и других параметров. Относительно подробно изучен температурный фактор. Зависимость дыхания почвы от температуры в первом приближении соответствует правилу Вант-Гоффа: скорость продукции С0 2 при нагревании на 10 °С увеличивается примерно в 2 раза (обычно Q i0 варьирует от 2,0 до 2,5). Близкие значения Q l0 получены для продукции N 2 0, NO и СН 4 .

Вполне очевидно, что процесс разложения органического вещества почвенными микроорганизмами зависит также от влажности почвы и других факторов (и их взаимодействия). Примерная картина зависимости скорости разложения растительного опада от температуры и влажности почвы как ключевых факторов в обобщенном случае показана на рис. 2.3.

Попыткам уточнить эту зависимость посвящены многочисленные работы по сценариям последствий глобального изменения климата.

На глобальном уровне запасы углерода в почвах, биомассе суши и в атмосфере составляют примерно (1500, 600 и 720) 10 15 г соответственно. Изменение уровня почвенного углерода может существенно повлиять на пул атмосферного углерода, который усту-


Рис. 2.3. Зависимость относительной скорости разложения органического вещества (%) от температуры и влажности почвы. Для характеристики влажности почвы представлены простейшие градации полевого описания в диапазоне примерно от -0,01 до -100 бар: «мокрая» - выделяет воду при сжимании в руке, «сырая» - напоминает тесто, «влажная» - увлажняет фильтровальную бумагу, «свежая» - холодит руку, «сухая» - пылит пает почвенному. Подобные расчеты подчеркивают значимость почвенного органического вещества и почвенного микробного блока как факторов, определяющих климат. Для глобальной оценки величины углерода почвенной микробной биомассы предлагались разные методы и схемы расчета, которые позволили очертить диапазон значений - (2,5- 10) 10 15 г.

В относительно сбалансированных экосистемах («климакс») отношение углерода микробной биомассы к углероду почвенного органического вещества С МИ|ф /С орг составляет примерно 2 %. Через это «игольное ушко» должно пройти органическое вещество, поступающее в почву. Отклонение С МИ|ф /С орг отданного значения может указывать на нарушение режима системы по органическому веществу.

Для оценки увлажнения почв часто используются показатели объемной и весовой влажности, однако эти показатели неудовлетворительно характеризуют степень доступности воды для микроорганизмов. Вода может находиться в природной среде в различных состояниях, начиная от гигроскопической влаги, прочно адсорбированной на почвенных частицах, до гравитационной воды, свободно перемещающейся в крупных порах под действием силы тяжести. Для более строгой оценки степени доступности воды информативным является определение потенциала влаги как количества термодинамической работы, которая должна быть затрачена организмом на извлечение воды. Чаще всего диапазоны потенциалов воды для почвенных микроорганизмов представлены в барах. Среди других термодинамических показателей используют также показатель активности воды - отношение показателей давления водяного пара в исследуемой системе и чистой воды.

Развитие микроорганизмов в почвах обычно проходит не в большом объеме жидкости, а в капиллярах, заполненных водным раствором, или в тонких пленках. Толщина пленок и капилляров имеет существенное значение для жизнедеятельности микроорганизмов. Даже толстые капилляры часто заполнены воздухом и только на поверхности их стенок находится пленочная вода. В тонких пленках микроорганизмы практически не развиваются. По некоторым данным, органическое вещество в капиллярах с диаметром менее 1 мкм недоступно для микроорганизмов. Хорошее развитие микроорганизмов наблюдается в водных пленках толщиной 10 мкм и более.

Па микроорганизмы, расположенные в капиллярах и пленках, оказывает влияние (кроме большой адсорбирующей поверхности) специфика распределения и диффузии ресурсов и продуктов жизнедеятельности. Отмечено, что при развитии в тонких водных пленках уменьшаются размеры клеток. По всей видимости, одна из основных причин более мелких размеров клеток в почве по сравнению с питательными средами заключается в том, что в почве клетки развиваются в капиллярах. Статистический анализ особенностей размножения почвенных микроорганизмов с помощью разработанной Б. В. Перфильевым капиллярной микроскопии показал, что микроколонии бактерий разных классов в стеклянных капиллярах in situ распределены по закону редких событий (закон Пуассона). По мнению японского микробиолога Т.Хаттори, наблюдаемая малая величина вероятности размножения бактерий в почве объясняет, почему в ней не выполняется теорема Гаузе о конкурентном исключении популяций с близкими экологическими нишами.

В зависимости от влажности почвы режим функционирования почвенной биоты меняется столь существенно, что это может принципиально изменить направленность экосистемных процессов и привести к нежелательным последствиям. Нижний предел водного потенциала для микроорганизмов существенно ниже, чем для растений, и составляет -150 бар и менее для некоторых почвенных грибов, включая Penicillium spp. и Aspergillus spp. В таких условиях активная биота может быть представлена системой, построенной в основном на грибах и их хищниках (некоторых почвенных клещах).

При повышении потенциала почвенной влаги примерно до -55 бар и выше биоразнообразие возрастает. В частности, заметную роль в минерализации органического вещества в почве начинают играть актиномицеты - мицелиальные бактерии, которые являются продуцентами основных антибиотиков, используемых в медицине. Вероятно, эффективность метода лечения специально подготовленной землей (почвенная катаплазма), который, в частности, применял в прошлом веке выдающийся специалист в области гнойной хирургии В. Ф. Войно-Ясенецкий, связана с синтезом актиномицетами комплекса антибиотиков. Характерный запах почвы определяется некоторыми летучими продуктами жизнедеятельности актиномицетов (геосмин, 2-метилизоборнеол), причем в ряде случаев показана значимость этих соединений в координации процессов в микробном сообществе (например, инициация прорастания спор микоризных грибов).

Рост большинства бактерий обеспечивается при более высоких значениях потенциала почвенной влаги: от - 40 до 0 бар, а миграция бактерий возможна в диапазоне - (0,1-0,5) бар и выше. Применяя бактериальные удобрения, необходимо обеспечить непосредственный контакт клеток бактерий с корнем растения. Примером может служить активная миграция симбиотических азот- фиксаторов клубеньковых бактерий к корню растения-хозяина с последующим проникновением в корень и формированием клубеньков. При благоприятных условиях на 1 см 2 поверхности корня из почвы поступает примерно 20 клеток клубеньковых бактерий за 1 ч, причем значимость фактора миграции на этом этапе взаимодействия может превосходить значимость процесса размножения бактерий.

Вместе с тем в этом же интервале потенциала почвенной влаги активно прорастают многие фитопатогенные грибы (Pythium spp., Phytophtora spp., Fusarium spp.). При наличии таких популяций в природной среде это может привести к их доминированию в микробном сообществе, болезням растений и существенной потере урожая.

Самая высокая скорость разложения органического вещества микроорганизмами как условия снабжения растений основными минеральными ресурсами обеспечивается примерно при -0,1 бар. В этом случае почвенная биота наиболее эффективно выполняет свою основную экосистемную функцию по рециклизации ресурсов.

При переувлажнении скорость минерализации снижается, а в микробной системе на первый план выходят анаэробные бактерии. В ряде случаев такое переключение режима микробной системы нежелательно для сельскохозяйственного производства, поскольку в результате денитрификации происходит потеря азота и могут накапливаться токсические продукты (летучие жирные кислоты, аммиак, этилен, сероводород, двухвалентное железо и др.). В переувлажненной почве обычно окислительно-восстановительный потенциал на первых этапах разложения органического вещества сохраняется на уровне примерно 200 мВ, а затем происходит резкое снижение потенциала до -200 мВ, что близко к пороговому значению для образования метана. Наличие в почве нитратов существенно задерживает возникновение условий сильного восстановления. В этом случае в среде появляются продукты денитрификации, включая азот.

Анаэробные микрозоны создаются и в почвах, которые не переувлажнены. Примером может служить небольшой почвенный агрегат с органическим веществом. На его поверхности в аэробных условиях в результате жизнедеятельности нитрифицирующих бактерий образуются нитраты. Внутренняя часть агрегата будет анаэробной и благоприятной для денитрификации при диффузии нитрата в почвенной влаге внутрь комочка.

В ряде случаев переключение в анаэробный режим может оказаться эффективным для ликвидации загрязнения окружающей среды. Например, при интенсивном сельскохозяйственном производстве серьезной проблемой стала избыточная концентрация нитратов. Для их удаления предложен микробиологический механизм денитрификации с помощью временного переувлажнения почв. Нитраты в этом случае будут использоваться почвенными микроорганизмами в качестве альтернативного акцептора электронов с образованием газов - азота и закиси азота. Таким путем удается достаточно быстро устранить загрязнение почв нитратами и предотвратить их поступление в поверхностные воды. Однако может возникнуть и другая проблема. Закись азота после поступления в атмосферу способствует разрушению озонового слоя. Поэтому возникает необходимость контроля процесса денитрификации с созданием условий для преимущественного образования азота как конечного продукта. Создание анаэробных условий с помощью переувлажнения почвы может оказаться также эффективным способом микробиологического разрушения некоторых ксенобиотиков.

Особенность почвы как природного местообитания различных организмов состоит в том, что условия для жизнедеятельности биоты непостоянны, а меняются в зависимости от климатических и других факторов. Например, типична ситуация с чередованием процессов увлажнения (после дождя или полива) и высушивания почв. В таких условиях существенно снижается функциональное потенциальное разнообразие почвенного бактериального сообщества, оцениваемое по способности утилизировать различные органические вещества. Есть основания полагать, что ведущая экоси- стемная функция почвенной биоты определяется не только параметрами, складывающимися в местообитании в данный момент времени, но и предысторией водного режима.