Определение микробного числа воды (Лабораторная работа). Определение микробного числа воды Омч в воде

Сырое молоко - молоко, не подвергавшееся термической обработке при температуре более чем 40ºС или обработке, в результате которой изменяются его составные части.

Сырое молоко может содержать опасные микроорганизмы, которые могут вызывать инфекционные болезни и пищевые отравления. Сырое молоко занимает первое место среди продуктов, употребление которых связано с риском получить серьезное заболевание.

Сорт молока зависит от количеств МАФАнМ в 1 мл молока, по санитарным правилам и нормам (СанПиН 2.3.2.1078-01) сырое молоко подразделяют на:

  • на молоко сырое, высший сорт - не более 300 тыс. бактерий в 1 мл;
  • на молоко сырое, I сорт - не более 500 тыс. бактерий в 1 мл;
  • на молоко сырое, II сорт - не более 4 млн бактерий в 1 мл.

Цель исследования: изучить уровень микроорганизмов в сыром молоке. В связи с этим, была поставлена задача: определить уровень общего микробного числа в молоке, а именно КМАФАнМ (количество мезофильных аэробных и факультативно-анаэробных микроорганизмов).

Материалом для исследования служило сырое молоко, взятое от коровы по кличке «Снежинка», симментальской породы находящейся в стационаре БашГАУ.

Рисунок 1 . Образец исследуемого молока.

Определение КМАФАнМ проводила согласно действующего ГОСТ Р 53430-2009. Метод основан на способности мезофильных аэробных и факультативно-анаэробных микроорганизмов размножаться на питательной среде (МПА) при температуре 30±1°С в течение 72 ч.

Из сырого молока готовила последовательные десятикратные разведения, т.е. 1 мл сырого молока вносила в пробирку с 9 мл стерильной воды для получения первого разведения 1:10 (10‾¹). Из первого разведения 1 мл перенесла во вторую пробирку с 9 мл стерильной воды – получилось второе разведение 1:100 (10‾²) и так далее до разведения 10 -5 .

Выделение КМАФАнМ из проб сырого молока проводила путем посева трех последних разведений (10 -3 , 10 -4 , 10 -5) (таблица 1).

Таблица 1 .

Схема посевов на питательные среды

Питательная среда

Выделяемые микроорганизмы

Разведения

По 1 мл каждого разведения внесла в одну чашку Петри, с заранее маркированной крышкой, и залила 14±1 мл расплавленным и охлажденным до температуры 40-45°С агаром. Сразу после заливки агара содержимое чашки Петри тщательно перемешала путем легкого вращательного покачивания для равномерного распределения посевного материала. После застывания агара чашки Петри перевернула крышками вниз и поместила в термостат при 30±1°С на 72 часа.

Количество выросших колоний подсчитала в каждой чашке, умножила на степень (формула 1).

Формула расчета: Х= n*10 m

где n - количество колоний, подсчитанных на чашке Петри;

m - число десятикратных разведений.

Получила следующее среднее значение (таблица 2).

Таблица 2.

Количество выросших колоний

Из таблицы 2 видно, что в чашке Петри с разведением 10‾ 3 выросло 21 колония, что соответствует 21000 микроорганизмов; в чашке с разведением 10‾ 4 – 13 колоний (130000), а в чашке с разведением 10‾ 5 – 6 колонии (600000). Среднее значение трех показателей составило 250333 (250,333 тыс.) микроорганизмов.

Таким образом, общее микробное число в молоке, а именно количество мезофильных аэробных и факультативно-анаэробных микроорганизмов в исследуемом молоке составляет 250,333 тыс. По санитарным правилам и нормам (СанПин 2.3.2.1078-01) данное сырое молоко можно отнести к категории «высший сорт», поскольку КМАФАнМ составило менее 300 тыс. бактерий в 1 мл.

Также необходимо отметить, что данное сырое молоко соответствует ГОСТ Р 53430-2009, пригодно для непосредственного потребления, переработки на молочные продукты, отвечает требованиям санитарного состояния содержания животных и гигиены получения молока.

Список литературы :

  1. Госманов Р.Г. Санитарная микробиология: Учебное пособие. – СПб.: Издательство «Лань», 2010. – 240с.
  2. Ильясова З. З. Методические указания к практическим занятиям С2.Б.11 Ветеринарная микробиология и микология: Методические указания / З. З. Ильясова. – Уфа: Башкирский ГАУ, 2015. – 28 с.
  3. Молоко и продукты переработки молока. Методы микробиологического анализа: ГОСТ Р 53430-2009. – Утвержден и введен в действие Приказом Федерального агентства по техническому регулированию и метрологии от 27 ноября 2009 г. № 520-ст. – М. : Стандартинформ, 2010.

Общее микробное число

Общее микробное число отражает общий уровень содержания бактерий в воде, а не только тех из них, которые образуют колонии, видимые невооруженным глазом на питательных средах при определенных условиях культивирования. Эти данные не имеют большого значения для обнаружения фекального загрязнения и не должны считаться важным показателем при оценке безопасности систем питьевого водоснабжения, хотя внезапное увеличение числа колоний при анализе воды из подземного водоисточника может служить ранним сигналом загрязнения водоносного горизонта.

Общее микробное число полезно при оценке эффективности процессов водоочистки, особенно коагуляции, фильтрации и обеззараживания, при этом основная задача заключается в поддержании их количества в воде на возможно более низком уровне. Общее микробное число может быть использовано также для оценки незагрязненности и целостности распределительной сети и пригодности воды для производства пищевых продуктов и напитков, где число микроорганизмов должно быть низким для сведения до минимума риска порчи. Ценность данного метода заключается в возможности сравнения результатов при исследовании регулярно отбираемых проб из одной и той же системы водоснабжения для обнаружения отклонений.

Общее микробное число, т. е. число колоний бактерий в 1 мл питьевой воды, не должно быть более 50.

Вирусологические показатели качества воды

К вирусам, вызывающим особое беспокойство в связи с передачей водным путем инфекционных заболеваний, относятся главным образом те, которые размножаются в кишечнике и в больших количествах (десятки миллиардов на 1 г кала) выделяются с фекалиями зараженных людей. Хотя репликации вирусов вне организма не происходит, энтеровирусы обладают способностью к выживанию во внешней среде в течение нескольких дней и месяцев. Особенно много энтеровирусов в сточных водах. При водозаборе на водоочистных сооружениях в воде обнаруживают до 43 вирусных частиц на 1 л.

Высокая выживаемость вирусов в воде и незначительная заражающая доза для человека приводят к эпидемическим вспышкам вирусного гепатита и гастроэнтерита, но через источники водоснабжения, а не питьевую воду. Однако потенциально такая возможность сохраняется.

Вопрос о количественной оценке допустимого содержания вирусов в воде очень сложен. Сложно и определение вирусов в воде, особенно питьевой, так как возможен риск случайного загрязнения воды при отборе проб. В Российской Федерации согласно СанПиНу оценку вирусного загрязнения (определение содержания колифагов) проводят по подсчету числа бляшкообразующих единиц, создаваемых колифагом. Прямое определение вирусов очень сложно. Колифаги присутствуют совместно с кишечными вирусами. Количество фагов обычно больше, чем вирусных частиц. По своей величине колифаги и вирусы очень близки, что важно для процесса фильтрации. Согласно СанПиНу в 100 мл пробы бляшкообразующих единиц быть не должно.

Простейшие

Из всех известных простейших патогенными для человека, передающимися через воду, могут быть возбудители амебиаза (амебной дизентерии), лямблиоза и балантидиаза (инфузории). Однако через питьевую воду возникновение данных инфекций происходит редко, лишь при попадании в нее сточных вод. Наиболее опасен человек, являющийся источником-носителем резервуара цист лямблий. Попадая в сточные и питьевые воды, а затем опять в организм человека, они могут вызвать лямблиоз, протекающий с хроническими диареями. Возможен смертельный исход.

По принятому нормативу цист лямблий в питьевой воде объемом 50 л наблюдаться не должно.

Должны отсутствовать в питьевой воде и гельминты, а также их яйца и личинки.

Водопроводную воду засевают в объеме 1см3 (1 мл). Пробу вносят в стерильную чашку Петри, заливают 10-12 мл расплавленного и остуженного до 45°С питательного агара, перемешивают с водой. Посев инкубируют при 37°С в течение 1-2 сут. Затем подсчитывают количество выросших на поверхности и в глубине среды колоний и вычисляют микробное число воды - количество микроорганизмов в 1 мл.

Титрационный метод
Для исследования водопроводной воды делают посевы трех объемов по 100 мл, трех объемов по 10 мл и трех объемов по 1 мл в глюкозопептонную среду. Посевы инкубируют в течение суток при 37°С. О брожении судят по наличию пузырьков газа в поплавке. Из забродивших или помутневших проб производят посевы на среду Эндо.
Из выросших колоний делают мазки, окрашивают по Граму и ставят оксидазный тест, позволяющий дифференцировать бактерии родов Escherichia, Citrobacter иEnterobacter от грамотрицательных бактерий семейства Pseudomonadaceae и других оксидазоположительных бактерий, обитающих в воде.
Коли-титр воды измеряется минимальным количеством воды (мл), в котором обнаруживаются БГКП, коли-индекс - количеством БГКП, содержащихся в 1 л исследуемой воды.

Определение микробного числа воздуха

Количественные микробиологические методы исследования воздуха основаны на принципах осаждения (седиментации), аспирации или фильтрации.
Седиминтационный метод. Две чашки Петри с питательным агаром оставляют открытыми в течение 60 мин, после чего посевы инкубируют в термостате при 37°С. Результаты оценивают по суммарному числу колоний, выросших на обеих чашках: при наличии менее 250 колоний воздух считается чистым; 250-500 колоний - загрязненным в средней степени, при количестве колоний более 500 - загрязненным.
Аспирационный метод - более точный количественный метод определения микробного числа воздуха. Посев воздуха осуществляется с помощью приборов (прибор Кротова и пробоотборник ПАБ-1).
Аппарат Кротова устроен таким образом, что воздух с заданной скоростью просачивается через узкую щель плексигласовой пластины, закрывающей чашку Петри с питательным агаром. При этом частицы аэрозоля с содержащимися на них микроорганизмами равномерно фиксируются на всей поверхности среды благодаря постоянному вращению чашки под входной щелью.
После инкубации посева в термостате проводят расчет микробного числа

Методы стерилизации

  • Термическая: паровая и воздушная (сухожаровая)
  • Химическая: газовая или химическими растворами (стерилянтами)
  • Плазменная (плазмой перекиси водорода)
  • Радиационная стерилизация - применяется в промышленном варианте
  • Метод мембранных фильтров - применяется для получения небольшого количества стерильных растворов, качество которых может резко ухудшиться при действии других методов стерилизации(бактериофаг, селективные питательные среды, антибиотики)

Термические методы стерилизации

Преимущества термических методов стерилизации:

  • Надёжность
  • Отсутствие необходимости удаления стерилянтов с предметов медицинского назначения
  • Удобство работы персонала
  • Стерилизация проводится в упаковках, что позволяет сохранить стерильность некоторый период времени.

Паровая стерилизация

Осуществляется подачей насыщенного водяного парапод давлением в паровых стерилизаторах (автоклавах).

Паровая стерилизация под давлением считается наиболее эффективным методом, так как чем выше давление, тем выше температура пара, стерилизующего материал; бактерицидные свойства пара выше, чем воздуха, поэтому для стерилизации применяют пересыщенный пар.

Паровой стерилизации подвергают изделия из текстиля (бельё, вату, бинты, шовный материал), из резины, стекла, некоторых полимерных материалов, питательные среды, лекарственные препараты.


Похожая информация:

  1. Анализ взаимосвязи между технологическими переменными, определение основных требований к ведению процессов, формулирование критериев качества и целей управления
  2. Анализ динамики числа пожаров за 2010-2014 гг. и прогноз количества пожаров на 2015 г
  3. Анализ числа пожаров в районе, обслуживаемом 3 РОНД за период с 2010-2014 гг
  4. Ангины: 1) определение, этиология и патогенез 2) классификация 3) патологическая анатомия и дифференциальная диагностика различных форм 4) местные осложнения 5) общие осложнения

Количественный показатель, отражающий содержание мезофильных аэробных организмов в одном миллилитре жидкости, принято называть общим микробным числом воды. Поскольку бактериологический анализ жидкости – процесс трудоемкий, для определения уровня ее загрязнения используют показатель суммарного количества микробов, образующих колонии. Этот тест помогает выявить бактерии в среде, свидетельствует об уровне ее загрязненности.

лаборатория нашей компании при МГУ имени М.В. Ломоносова

Цены на бактериологический анализ

От 2 500 руб. ЗАКАЗАТЬ

Микробиологический анализ (2 показателя)

Исследуемые показатели: общее микробное число (ОМЧ), общие колиформные бактерии и термотолерантные колиформные бактерии.

Исследование воды на наличие бактерий

Для подсчета общего микробного числа питьевой воды применяется мембранный метод, включающий проведение нескольких этапов:

  • воду пропускают через мембрану с порами размером в 0,45 мкм;
  • на ее поверхности появляются все микроорганизмы;
  • мембрана с бактериями помещается в специальную среду с температурой 30-37°С, где патогенные микроорганизмы проходят инкубационный период, размножаются и образуют колонии, которые легко подсчитать.

Такой анализ не позволяет однозначно судить о наличии болезнетворных организмов, но свидетельствует о бактериологической загрязненности жидкости в целом. Для проведения исследования обращайтесь в компанию "ДОМИАТО". Мы гарантируем высокую скорость и качество лабораторных работ. Наши специалисты исследуют воду на наличие потенциально опасных организмов, подберут подходящую систему водоочистки и установят ее в кратчайшие сроки.

Узнайте общее микробное число питьевой воды, обратившись в компанию "ДОМИАТО", и получите возможность подобрать эффективные средства для очистки жидкости.

Природная вода из различных источников всегда содержит некоторое количество химических соединений, разнообразную микрофлору, яйца гельминтов, вирусы, которые могут быть причиной интоксикации, а также заболеваний эпидемиологического и эндемического характера. Вода – один из путей передачи возбудителей заболеваний, в частности инфекционных. Инфекции, предающиеся преимущественно через воду, называются водными. К ним относятся: брюшной тиф, дизентерия, сальмонеллезы, холера, инфекционный гепатит, полиомиелит, туляремия, лептоспирозы. Передаются через воду заболевания кожных покровов и слизистых оболочек (трахома, чесотка, грибковые заболевания, аденовирусные конъюнктивиты). Вода может играть важную роль и в передаче возбудителей ряда зоонозных инфекций, главным образом среди животных (сап, ящур, сибирская язва, сальмонеллез). Загрязнение воды патогенными микробами происходит многими путями. Наиболее распространенный из них – спуск в водоемы неочищенных сточных вод, в частности инфекционных больниц, ветеринарных лечебниц, промышленных предприятий, перерабатывающих животное сырье, банно-прачечных предприятий. Фекальное загрязнение водоемов, в частности колодцев, может вызываться кроме этого поверхностными водами в периоды ливневых дождей и таяния снегов, а также почвенными водами, если в них проникают нечистоты из выгребных ям. При центральном водоснабжении становится возможным загрязнение воды не только в месте водозабора, но и в головных сооружениях, а также в водоразводящей сети, чаще всего в случаях нарушения герметичности водопроводных труб и других аварий или подсоединения технических водопроводов к водопроводам питьевым. Водоемы могут загрязняться и выделениями диких животных, главным образом грызунов, которые с мочой и фекалиями могут выделять в воду возбудителей таких, например болезней как туляремия и лептоспирозы. Вода, загрязненная патогенными микробами, может вызвать массовые заболевания (эпидемии). Вода искусственных бассейнов при недостаточной очистке и обеззараживании может также быть передатчиком ряда инфекционных заболеваний. В загрязненной воде часто присутствуют стафилококки, стрептококки, возбудители дизентерии, полиомиелита и др.


Показатели бактериологического загрязнения воды:

Микробное число воды общее количество микробов, содержащихся в 1 мл воды ;
Титр кишечной палочки наименьший объем воды, в котором обнаруживается одна кишечная палочка ;
Индекс кишечной палочки количество кишечных палочек в 1 л воды .

Микробное число воды показывает, насколько благоприятны или неблагоприятны условия для жизни микробов. В норме в 1 мл водопроводной воды не должно быть более 100, а в колодезной –более 1000 микробов.

Кишечная палочка, обычно обитающая в толстом кишечнике человека и животных, служит показателем свежего загрязнения воды экскрементами животных и человека. В соответствии с гигиеническими нормами титр кишечной палочки для водопроводной питьевой воды установлен не менее 300 мл. Индекс кишечной палочки - 3 (наличие в 100 мл воды не более 3 кишечных палочек). Для колодезной воды титр кишечной палочки не должен быть более 100.

Гигиеническим показателем качества воды является также наличие в ней яиц гельминтов. В питьевой воде и воде крытых бассейнов яйца гельминтов должны отсутствовать.

Флора и фауна воды. Не допускает содержания в питьевой воде видимых на глаз водных организмов.

Источники водоснабжения. Основные источники водоснабжения – закрытые водоемы (подземные воды) и открытые озера, пруды, водохранилища).

Показатели качества источника централизованного хозяйственно-питьевого водоснабжения.

Определяемые показатели 1-й класс 2-й класс 3-й класс
Подземные источники
Мутность, мг/дм³не более 1,5 1,5 10
Цветность, град, не более 20 20 50
Водородный показатель (рН) 6-9 6-9 6-9
Железо,мг/дм³не более 0,3 10 20
Марганец, мг/дм³ 0,1 1
Сероводород.мг/дм³ отсутствие 3 10
Фтор,мг/дм³ 1,5-0,7 1,5-0,7 5
Число бактерий группы кишечной палочки в 1 дм³ 3 100 1000
Поверхностные источники водоснабжения
Мутность 20 1500 10000
Цветность 35 120 200
Запах при 20° и 60° более, баллы 2 3 4
Водородный показатель 6,5-8,5 6,5-8,5 6,5-8,5
Железо 1 3 5
Марганец 0,1 1 2
БПК полное, мг по килороду/дм³с 3 5 7
Число лактозоположительных кишечных палочек в дм³воды 1000 10000 50000

Очистка и обеззараживание воды :

Первый этап – очистка воды от взвешенных частиц отстаиванием в специальных отстойниках (горизонтальных и вертикальных) и фильтрацией. Для ускорения используется коагуляция – очистка воды с помощью специальных химических соединений – коагулянтов (сернокислый алюминий – глинозем), он вступает в реакцию с солями кальция и магния, образует с ними гидраты в виде хлопьев, оседающих на дно очистных сооружений.

Второй этап- фильтрация. После коагуляции вода фильтруется. Фильтры: прямоугольные резервуары площадью 50-100 м², с речным песком высотой 0,6-1м, под которым слой гравия и дренажные трубы для отвода профильтрованной воды. После 8-12 часов фильтр промывается обратным током воды.

Третий этап – дезинфекция. В нашей стране – это хлорирование газообразным хлором. Это один из самых старых, дешевых простых и достаточно надежных способов обеззараживания воды. Применяется также озонирование, и обработка УФЛ. Озонирование улучшает вкус воды и органолептические свойства воды, но это дорого, требует сложной и дорогой аппаратуры, тщательного контроля