История электрокардиографии. Развитие ЭКГ. Электрокардиография Информативность отведений от конечностей

Введение

В связи с ухудшением экологической обстановки, увеличением количества стрессов, неправильного питания и других пагубных факторов очень остро встала проблема сердечно-сосудистых заболеваний. Причем масштабы проблемы очень велики: по данным Минздрава Российской Федерации -- около трети населения России в той или иной мере страдают заболеваниями, связанными с нарушением работы сердечно-сосудистой системы. Очень важно выявлять отклонения от нормы на ранней стадии развития -- тогда лечение заболевания в большинстве случаев не составляет особой сложности, и позволяет человеку поправить свое здоровье не отрываясь от повседневной деятельности. Поэтому все чаще требуются системы быстрой диагностики, в том числе и диагностики сердца.

На сегодняшний день одним из самых распространенных методов диагностики и распознавания сердечно-сосудистых заболеваний является электрокардиография. Сигнал ЭКГ характеризуется набором зубцов, по временным и амплитудным параметрам которых ставится диагноз. До недавнего времени процедуру нахождения характеристик зубцов выполнял врач-кардиолог, использую при этом только чертежные принадлежности. Такая схема достаточно проста и надежна, но требует много времени, и она работала в течении долгого времени из-за отсутствия альтернативных подходов к решению данной задачи.

С развитием компьютеров стали появляться специализированные комплексы, позволяющие выявлять сердечные заболевания, на основе автоматизированного анализа временных параметров ЭКГ. На сегодняшний день известны разработки фирм MedIT, Innomed Medical Co. Ltd. и другие.

В то же время, в нашей стране технический уровень специалистов достаточно высок, чтобы разработать собственный аналог подобных комплексов, стоящий при этом дешевле западных.

Электрокардиография

Электрокардиография - метод записи электрических потенциалов, сопровождающих работу сердца. К специальному регистрирующему аппарату (электрокардиографу) присоединяются электроды, другой конец которых крепится к конечностям пациента или размещается на его грудной клетке; собственно запись электрических потенциалов, сопровождающих работу сердца, называется электрокардиограммой (ЭКГ).

Прямым результатом электрокардиографии является получение электрокардиограммы (ЭКГ) (рис.1) -- графического представления разности потенциалов возникающих в результате работы сердца и проводящихся на поверхность тела. На ЭКГ отражается усреднение всех векторов потенциалов действия, возникающих в определённый момент работы сердца.

Рис.1

История

электрокардиография сердце ритм фурье кардиомонитор

В XIX веке стало ясно, что сердце во время своей работы производит некоторое количество электричества. Первые электрокардиограммы были записаны Габриелем Липпманом с использованием ртутного электрометра. Кривые Липпмана имели монофазный характер, лишь отдалённо напоминая современные ЭКГ.

Опыты продолжил Виллем Эйнтховен, сконструировавший прибор (струнный гальванометр), позволявший регистрировать истинную ЭКГ. Он же придумал современное обозначение зубцов ЭКГ и описал некоторые нарушения в работе сердца. В 1924 году ему присудили Нобелевскую премию по медицине.

Первая отечественная книга по электрокардиографии вышла под авторством русского физиолога А. Самойлова в 1909 г. (Электрокардиограмма. Йенна, изд-во Фишер).

Применение

· Определение частоты и регулярности сердечных сокращений (например, экстрасистолы (внеочередные сокращения), или выпадения отдельных сокращений -- аритмии).

· Показывает острое или хроническое повреждение миокарда (инфаркт миокарда, ишемия миокарда).

· Может быть использована для выявления нарушений обмена калия, кальция, магния и других электролитов.

· Выявление нарушений внутрисердечной проводимости (различные блокады).

· Метод скрининга при ишемической болезни сердца, в том числе и при нагрузочных пробах.

· Даёт понятие о физическом состоянии сердца (гипертрофия левого желудочка).

· Может дать информацию о внесердечных заболеваниях, таких как тромбоэмболия лёгочной артерии.

· В определённом проценте случаев может быть абсолютно неинформативна.

· Позволяет удалённо диагностировать острую кардиальную патологию (инфаркт миокарда, ишемия миокарда) с помощью кардиофона.

Прибор

Как правило, электрокардиограмма записывается на термобумаге. Полностью электронные приборы позволяют сохранять ЭКГ в компьютере. Скорость движения бумаги составляет обычно 25мм/с. В некоторых случаях скорость движения бумаги устанавливают на 12,5мм/с, 50мм/с или 100мм/с. В начале каждой записи, регистрируется контрольный милливольт. Обычно его амплитуда составляет 10мм/мВ.

Как проводится ЭКГ

ЭКГ является записью электрической активности сердца. Запись производится с поверхности тела пациента (верхние и нижние конечности и грудная клетка).

Наклеиваются электроды (10 штук) или используются специальные присоски и манжеты. Снятие ЭКГ занимает 5-10 минут.

ЭКГ регистрируют на различной скорости. Обычно скорость движения бумаги составляет 25 мм/сек. При этом 1 мм кривой равен 0, 04 сек. Иногда для более детальной записи используют скорость 50 и даже 100 мм/сек. При длительной регистрации ЭКГ для экономии бумаги используют меньшую скорость - от 2,5 до 10 мм/сек.

Виллем Эйнтховен, голландский врач-физиолог, потомок испанских евреев, бежавших от инквизиции в XV веке в Голландию, родился в 1860 году в Восточной, или Голландской Ост-Индии (ныне остров Ява) в семье колониального врача. В шестилетнем возрасте у Виллема умер отец, и семья вернулась в Утрехт. Как сын колониального врача мальчик имел право на бесплатное образование, но только по трем специальностям: учитель, врач и бухгалтер. Обязательным условием было возвращение на работу в колонии.


Эйнтховен искренне хотел пойти по стопам отца, но во время учебы в Утрехтском университете проявились его способности исследователя. Он понял, что научная работа привлекает его гораздо сильнее, чем врачебная практика. Уже его дипломная работа содержала научное открытие. Он исследовал оптическую иллюзию восприятия цвета: если на ровной поверхности расположены два круга разного цвета, например, синий и желтый, то один из цветов воспринимается как приближающийся, а другой как удаляющийся.

Научный руководитель Эйнтховена Херманн Снеллен (создатель таблицы для определения остроты зрения, которая до сих пор используется во всем мире) полагал, что этот оптический эффект обусловлен длиной волны. Но Эйнтховен доказал, что такое восприятие зависит от расположения зрачков: у одних людей они расположены ближе к вискам, у других - к переносице. Первые воспринимают синий цвет как «уходящий», а вторые наоборот. Именно эту работу Кандинский использовал для учения об агрессивных цветах в абстрактной живописи.

За эту работу Эйнтховен получил степень доктора медицины и философии и был рекомендован на освободившуюся в этот момент кафедру гистологии и физиологии Лейденского университета. Благодаря настойчивости своих научных руководителей, профессоров Дондерса и Снеллена, в 1886 году в возрасте 25 лет Эйнтховен становится профессором.

На четвертый год своего заведования кафедрой Эйнтховен услышал выступление Огастуса (Августа) Уоллера, читавшего лекции по физиологии в престижной лондонской больнице Сент-Мэри. Уоллер демонстрировал опыт на своем бульдоге Джимми.

Одна передняя и одна задняя лапы животного были помещены в две емкости с водой, которые были подключены к капилляру, заполненному ртутью и серной кислотой. При большом увеличении было видно, что на границе ртути и кислоты возникают повторяющиеся колебания. Джимми был знаменит на всю Англию, но когда парламентская комиссия возбудила уголовное дело о жестоком обращении с животными, Уоллер продемонстрировал опыт на себе.

Полученную таким образом кривую Эйнтховен предложил назвать «электрокардиограммой». Однако сложность математических пересчетов для представления колебаний на границе ртути и кислоты в капилляре и плохое качество исходной кривой заставили его искать новые способы регистрации. Эйнтховен использовал струйный гальванометр Клемана Адера, который тот изобрел для усиления радио- и электросигналов, получаемых из тех самых далеких колоний, в которых мог бы оказаться профессор.

Устройство полностью соответствовало своему названию по тонкому проводнику (струне), размещенному между двух сильных магнитов, проходил ток, и струна отклонялась от исходного положения в ту или иную сторону. Для получения тонкой, но достаточно прочной струны Эйнтховен использовал весьма экзотический способ. К кристаллам кварца крепилась стрела на тетиве лука, и когда кварц расплавлялся, стрела вылетала и тащила за собой жидкий кварц. Таким образом, ему удавалось получить струны диаметром до 7 микрон. Полученный «волосок» покрывался серебром в специальной камере - и проводник для очень слабых токов был готов.

Струна освещалась сверху мощным рефлектором, система линз переводила изображение колебаний на фотобумагу. Магниты были очень большими, требовали водяного охлаждения, система линз также требовала тщательной настройки. Целиком весь прибор весил около 290 кг, и требовалась команда из пяти человек для его обслуживания. Но главное было достигнуто: можно было снять электрические потенциалы работающего сердца у живого человека и зафиксировать их для дальнейшего анализа и изучения.

Регистрация ЭКГ проводилась в положении «сидя». Обе руки больного и левая нога (потом использовалась правая нога) помещались в металлические ванночки, для обеспечения проводимости, а провода от этих ванночек шли к струнному гальванометру. Регистрация токов между двумя руками, каждой рукой и ногой создавала треугольник, который был назван треугольником Эйнтховена. Эти первые отведения получили название стандартных и наименование I, II, III.

Для того чтобы не путать зубцы новых кардиограмм с предыдущими, снятыми с помощью ртутного капилляра и обозначавшимися буквами А, В, С, D, Эйнтховен использовал новую последовательность букв латинского алфавита: P, Q, R, S, T, U, которая и сохранилась до настоящего времени. Лаборатория Эйнтховена располагалась более чем в километре от клиники Лейденского университета, и это способствовало тому, что он назвал телекардиография. Токи от пациента по проводам передавались в лабораторию, и происходила запись кардиограммы. Очень быстро были описаны все основные нарушения ритма сердца и проводимости, а также изменения ЭКГ при различных заболеваниях. Метод оказался настолько информативным, что в лабораторию Эйнтховена потянулись врачи из всей Европы.

Эйнтховен выступал на съездах и конференциях врачей. В 1904 году на съезде в Брюсселе он познакомился с Александром Филипповичем Самойловым, основоположником электрокардиографии в России. Профессора подружились и до конца жизни состояли в переписке, в которой нередко шутили на тему сложной настройки струнного гальванометра.

Самойлов был профессором Казанского университета, к нему, как к Эйнтховену в Лейден, съезжались врачи всей России для знакомства с новым методом диагностики. Александр Филиппович был замечательным исполнителем фортепьянной музыки. Еще приват-доцентом в Петербурге он читал лекции о музыке, которые посещали Рахманинов, Танеев, Гречанинов. Он написал статью «Натуральные числа в музыке» (по поводу акустических особенностей гармонии А. Н. Скрябина). Благодаря работам Самойлова в 1922 году по распоряжению Ленина был приобретен один из первых электрокардиографов фирмы Siemens, весом всего 11 кг, для правительственного санатория. В 1927 году, в связи со смертью Эйнтховена, Лейденский университет пригласил Самойлова заведовать его кафедрой.

В 1924 году Виллему Эйнтховену была присуждена Нобелевская премия с формулировкой «За открытие техники электрокардиограммы». Большинство открытий и предложений Эйнтховена - наименование зубцов ЭКГ, стандартные отведения, понятие «треугольник Эйнтховена» - используются в медицинской практике и в настоящее время. Кардиография получила самое широкое распространение и применяется не только для больных, но и для обследования больших групп людей. В наше время трудно встретить человека, который не знает этого метода или хотя бы раз в жизни не делал кардиограмму. Современные кардиографы могут весить до 300 грамм, кривая может записываться на любые носители информации и передаваться на любые расстояния. Недаром открытие Эйнтховена считается одним из самых выдающихся открытий ХХ века.

Александр Свиридов

История ЭКГ
В 1873 г., был сконструирован электрометр, прибор позволивший
регистрировать электрические потенциалы. В результате совершенствования
этого устройства появилась возможность записывать сигналы с поверхности
тела, что позволило английскому физиологу А. Уоллеру впервые получить
запись электрической активности миокарда человека.

История ЭКГ
Он же впервые сформулировал основные положения электрофизиологических понятий ЭКГ,
предположив, что сердце представляет собой диполь, т. е. совокупность двух электрических
зарядов, равных по величине, но противоположных по знаку, находящихся на некотором
расстоянии друг от друга. Уоллеру принадлежит и такое понятие, как электрическая ось сердца.

Первым, кто вывел ЭКГ из
стен лабораторий в
широкую врачебную
практику, был
голландский физиолог,
профессор Утрехтского
университета Виллем
Эйнтховен. После семи
лет упорных трудов, на
основе изобретенного Д.
Швейггером струнного
гальванометра,
Эйнтховен создал первый
электрокардиограф.

В этом приборе электрический ток от
электродов, расположенных на
поверхности тела, проходил через
кварцевую нить. Нить была расположена в
поле электромагнита и вибрировала, когда
проходящий по ней ток взаимодействовал с
электромагнитным полем. Оптическая
система фокусировала тень от нити на
светочувствительный экран, на котором
фиксировались ее отклонения. Первый
электрокардиограф был весьма
громоздким сооружением и весил около
270 кг. Его обслуживанием были заняты
пять сотрудников. Тем не менее,
результаты, полученные Эйтховеном, были
революционными.

Как проводится ЭКГ
ЭКГ является очень информативным недорогим и доступным тестом,
позволяющим получить много информации о сердечной деятельности.
ЭКГ - запись электрической активности сердца. Запись производится с
поверхности тела пациента (верхние и нижние конечности и грудная клетка).

Как проводится ЭКГ
Наклеиваются
электроды (10 штук) или
используются
специальные присоски
и манжеты. Снятие ЭКГ
занимает 5-10 минут.
ЭКГ регистрируют на
различной скорости.
Обычно скорость
движения бумаги
составляет 25 мм/сек

Различные методики записи электрокардиограммы.
В настоящее время помимо общепринятой методики измерения
электрокардиограммы существуют другие дополнительные технологии,
которые значительно расширяют функциональные возможности данного
способа диагностики сердечно-сосудистых заболеваний.

10.

ЭКГ с функциональными пробами
Позволяет выявить некоторые скрытые
сбои в работе миокарда, которые по
разным причинам не выявляются при
обычном электрокардиографическом
обследовании в покое. Наиболее часто в
медицинской практике применяются
следующие функциональные пробы: с
физической нагрузкой, с блокаторами βадренорецепторов, с хлоридом калия, с
дипиридамолом (курантилом) и другие.

11.

ЭКГ с функциональными пробами
Ответной реакцией со стороны сердечнососудистой системы при этом будет
тахикардия, умеренное увеличение
артериального давления, повышенное
потребление миокардом кислорода и
возрастание сократительной способности
отделов сердца. У человека, с сердечнососудистыми заболеваниями, при
подобных нагрузках развивается острая
коронарная недостаточность с приступом
стенокардии. Не рекомендована в случае
предынфарктного состояния, сердечной
недостаточности или острого
тромбофлебита.

12.

Амбулаторное мониторирование по Холтеру.
Перспективный метод для выявления нарушений
сердечного ритма и признаков ишемии. На теле
пациента крепятся электроды и миниатюрное
устройство для регистрации биопотенциалов
работающего сердца, при этом он ведёт обычный
образ жизни. Возможно также во время проведения
подобной процедуры ведение дневника, в котором
можно фиксировать типы выполняемых нагрузок и
собственно ощущения пациента. Регистратор
дополнительно может осуществлять
мониторирование артериального давления,
дыхательной и двигательной активности больного.
Полученные данные передаются на компьютер
лечащему врачу для определения диагноза.

13.

Внутрипищеводная электрокардиография
Метод даёт возможность детально оценить
электрическую активность атриовентрикулярного
соединения и предсердий. При проведении
подобной процедуры активный гибкий
биполярный электрод размещается по
специальной методике в просвете пищевода и
устанавливается на уровне предсердий. Этот
способ применяется для подробной диагностики
различных видов блокад сердца и скрытой
коронарной недостаточности. Суть метода
сводится к влиянию на число сердечных
сокращений за счёт навязывания искусственного
ритма. Наиболее неприятное из всех
исследований.

14.

Электрография непосредственно пучка Гиса.
Подобный способ считается
высокоинформативным электрофизиологическим
исследованием и применяется для уточнения
места локализации атриовентрикулярных
блокад, источника нарушения сердечного ритма.
Чтобы записать ЭКГ, вводят биполярный
электрод в правые отделы миокарда в область
трёхстворчатого клапана. Электроды,
находящиеся в предсердии и желудочке,
соприкасаются с внутрисердечной перегородкой
в зоне ствола пучка Гиса. Сигнал от этих
электродов поступает на регистрирующее
устройство, что позволяет записать стандартные
отведения ЭКГ.

15.

Показания к проведению ЭКГ
1. Подозрение на заболевание сердца и высокий риск в отношении этих
заболеваний. Основными факторами риска являются:
Гипертоническая болезнь
Для мужчин – возраст после 40 лет
Курение
Гиперхолестеринемия
Перенесенные инфекции
Беременность

16.

Показания к применению ЭКГ
2. Ухудшение состояния больных с заболеваниями сердца, появление болей в
области сердца, развитие или усиление одышки, возникновение аритмии.
3. Перед любыми оперативными вмешательствами.
4. Заболевания внутренних органов, эндокринных желез, нервной системы,
болезней уха, горла, носа, кожные заболевания и т.д. при подозрении на
вовлечение сердца в патологический процесс.
5. Экспертная оценка шоферов, пилотов, моряков и т.д.
6. Наличие профессионального риска.

17.

Противопоказания
Процедура не имеет противопоказаний
и ограничений. Исследование могут
проходить дети, беременные и
кормящие женщины. Кроме того
проводится обследование плода (КТГ).
ЭКГ не рекомендуется людям с
деформацией грудной клетки,
воспалительными заболеваниями
кожи грудного отдела. Им назначают
трансэзофагеальное обследование.

18.

Диагностические возможности
ЭКГ является ценным диагностическим инструментом. По ней можно оценить
источник (так называемый водитель) ритма, регулярность сердечных
сокращений, их частоту. Все это имеет большое значение для диагностики
различных аритмий. По продолжительности различных интервалов и зубцов
ЭКГ можно судить об изменениях сердечной проводимости. Изменения
конечной части желудочкового комплекса (интервал ST и зубец Т) позволяют
врачу определить наличие или отсутствие ишемических изменений в сердце
(нарушение кровоснабжения).

19.

Диагностические возможности
Важным показателем ЭКГ является амплитуда зубцов. Увеличение ее
говорит о гипертрофии соответствующих отделов сердца, которая
наблюдается при некоторых заболеваниях сердца и при гипертонической
болезни.

Электрокардиография (ЭКГ) - является неинвазивным тестом, проведение которого позволяет получать ценную информацию о состоянии сердца. Суть данного метода состоит в регистрации электрических потенциалов, возникающих во время работы сердца и в их графическом отображении на дисплее или бумаге.

Навигация по разделу:

История электрокардиографии

Наличие электрических явлений в сокращающейся сердечной мышце впервые обнаружили два немецких ученых: Р. Келликер и И. Мюллер в 1856 году. Они провели исследования на различных животных, работая на открытом сердце. Однако возможность изучения электрических импульсов сердца отсутствовала до 1873 г., когда был сконструирован электрометр, прибор позволивший регистрировать электрические потенциалы. В результате совершенствования этого устройства появилась возможность записывать сигналы с поверхности тела, что позволило английскому физиологу А. Уоллеру впервые получить запись электрической активности миокарда человека. Он же впервые сформулировал основные положения электрофизиологических понятий ЭКГ, предположив, что сердце представляет собой диполь, т. е. совокупность двух электрических зарядов, равных по величине, но противоположных по знаку, находящихся на некотором расстоянии друг от друга. Уоллеру принадлежит и такое понятие, как электрическая ось сердца, о которой будет сказано ниже.

Первым, кто вывел ЭКГ из стен лабораторий в широкую врачебную практику, был голландский физиолог, профессор Утрехтского университета Виллем Эйнтховен. После семи лет упорных трудов, на основе изобретенного Д. Швейггером струнного гальванометра, Эйнтховен создал первый электрокардиограф. В этом приборе электрический ток от электродов, расположенных на поверхности тела, проходил через кварцевую нить. Нить была расположена в поле электромагнита и вибрировала, когда проходящий по ней ток взаимодействовал с электромагнитным полем. Оптическая система фокусировала тень от нити на светочувствительный экран, на котором фиксировались ее отклонения. Первый электрокардиограф был весьма громоздким сооружением и весил около 270 кг. Его обслуживанием были заняты пять сотрудников. Тем не менее, результаты, полученные Эйтховеном, были революционными. Впервые в руках врача оказался прибор столь много говорящий о состоянии сердца. Эйтховен предложил располагать электроды на руках и ногах, что используется и по сегодняшний день. Он ввел понятие отведения, предложив три так называемых стандартных отведения от конечностей, т. е. измерение разницы потенциалов между левой и правой рукой I отведение), между правой рукой и левой ногой II отведение) и между левой рукой и левой ногой III отведение). Заслуги Эйнтховена были оценены по достоинству и в 1924 г. ему была присуждена Нобелевская премия.

В двадцатых годах прошедшего века, Гольдбергер предложил еще три отведения, назвав их усиленными . При регистрации этих отведений одним из электродов служит одна из конечностей, а другим – объединенный электрод от двух других (индифферентный электрод). Разница потенциалов, измеренная между правой рукой и объединенными левой рукой и левой ногой, называется отведением aVR, между левой рукой объединенными правой рукой и левой ногой – отведением aVL и между левой ногой и объединенными руками – отведением aVF.

В дальнейшем, Вильсоном были предложены грудные отведения ЭКГ, в которых одним из электродов является точка на поверхности грудной клетки, а другим – объединенный электрод от всех конечностей. Электрод отведения V 1 располагается в IV межреберье по правому краю грудины, V2 – во IV межреберье по левому краю грудины, V 3 – на уровне IV ребра по левой окологрудинной (парастернальной) линии, V4 – в V межреберье по левой среднеключичной линии, V5 – в V межреберье по левой передней подмышечной линии и V6 – в V межреберье по левой средней подмышечной линии.

Таким образом, сформировалась привычная для нас система электрокардиографических отведений. Однако иногда используются и дополнительные отведения, когда общепринятые отведения оказываются недостаточными. Необходимость в этом возникает, например, при аномальном расположении сердца, при регистрации некоторых нарушений сердечного ритма и т. п. В этом случае используются правые грудные отведения (симметричные по отношению к левым), высокие грудные отведения (расположенные на одно межреберье выше стандартных) и отведения V7-9, являющиеся как бы продолжением основных отведений. Для оценки электрической активности предсердий используют пищеводное отведение, когда один из электродов располагают в пищеводе. Кроме общепринятой системы отведений, используются также отведения по Небу, обозначаемые буквами D (dorsalis – спинальное), А (anterior – переднее) и (I inferior – нижнее). Другие системы отведений (Лиана, Франка) в современной клинической практике практически не используются.

Как проводится ЭКГ

ЭКГ является очень информативным недорогим и доступным тестом, позволяющим получить много информации о сердечной деятельности.

ЭКГ является записью электрической активности сердца. Запись производится с поверхности тела пациента (верхние и нижние конечности и грудная клетка).

Наклеиваются электроды (10 штук) или используются специальные присоски и манжеты. Снятие ЭКГ занимает 5-10 минут.

ЭКГ регистрируют на различной скорости. Обычно скорость движения бумаги составляет 25 мм/сек. При этом 1 мм кривой равен 0, 04 сек. Иногда для более детальной записи используют скорость 50 и даже 100 мм/сек. При длительной регистрации ЭКГ для экономии бумаги используют меньшую скорость – от 2,5 до 10 мм/сек.

Как интерпретируется ЭКГ

Каждая клетка миокарда представляет собой маленький электрический генератор, который разряжается и заряжается при прохождении волны возбуждения. ЭКГ является отражением суммарной работы этих генераторов и показывает процессы распространения электрического импульса в сердце.

В норме электрические импульсы автоматически генерируются в небольшой группе клеток, расположенных в предсердиях и называемых синоатриальным узлом. Поэтому нормальный ритм сердца называется синусовым.

Когда электрический импульс, возникая в синусовом узле, проходит по предсердиям на электрокардиограмме появляется зубец P.

Дальше импульс через атриовентрикулярный (АВ) узел распространяется на желудочки по пучку Гиса. Клетки АВ-узла обладают более медленной скоростью проведения и поэтому между зубцом P и комплексом, отражающим возбуждение желудочков, имеется промежуток. Расстояние от начала зубца Р до начала зубца Q называется интервал PQ . Он отражает проведение между предсердиями и желудочками и в норме составляет 0,12-0,20 сек.

Потом электрический импульс распространяется по проводящей системе сердца, состоящей из правой и левой ножек пучка Гиса и волокон Пуркинье, на ткани правого и левого желудочка. На ЭКГ это отражается несколькими отрицательными и положительными зубцами, которые называются комплексом QRS . В норме длительность его составляет до 0, 09 сек. Далее кривая вновь становится ровной, или как говорят врачи, находится на изолинии.

Затем в сердце происходит процесс восстановления исходной электрической активности, называемый реполяризацией, что находит отражение на ЭКГ в виде зубца T и иногда следующего за ним небольшого зубца U. Расстояние от начала зубца Q до конца зубца Т называется интервалом QT . Он отражает так называемую электрическую систолу желудочков. По нему врач может судить о продолжительности фазы возбуждения, сокращения и реполяризации желудочков.

Диагностические возможности

ЭКГ является ценным диагностическим инструментом. По ней можно оценить источник (так называемый водитель) ритма, регулярность сердечных сокращений, их частоту. Все это имеет большое значение для диагностики различных аритмий. По продолжительности различных интервалов и зубцов ЭКГ можно судить об изменениях сердечной проводимости. Изменения конечной части желудочкового комплекса (интервал ST и зубец Т) позволяют врачу определить наличие или отсутствие ишемических изменений в сердце (нарушение кровоснабжения).

Важным показателем ЭКГ является амплитуда зубцов. Увеличение ее говорит о гипертрофии соответствующих отделов сердца, которая наблюдается при некоторых заболеваниях сердца и при гипертонической болезни.

ЭКГ, вне всякого сомнения, весьма мощный и доступный диагностический инструмент, однако стоит помнить о том, что и у этого метода есть слабые места. Одним из них является кратковременность записи – около 20 секунд. Даже если человек страдает, например, аритмией, в момент записи она может отсутствовать, кроме того запись, обычно производится в покое, а не во время привычной деятельности. Для того чтобы расширить диагностические возможности ЭКГ прибегают к длительной ее записи, так называемому мониторированию ЭКГ по Холтеру в течение 24-48 часов.

Иногда бывает необходимо оценить, возникают ли на ЭКГ у пациента изменения, характерные для ишемической болезни сердца. Для этого проводят ЭКГ-тест с физической нагрузкой. Для оценки переносимости (толерантности) и соответственно, функционального состояния сердца нагрузку осуществляют дозировано, с помощью велоэргометра или бегущей дорожки.

Показания к проведению ЭКГ

1. Подозрение на заболевание сердца и высокий риск в отношении этих заболеваний. Основными факторами риска являются:

  • Гипертоническая болезнь
  • Для мужчин – возраст после 40 лет
  • Курение
  • Гиперхолестеринемия
  • Перенесенные инфекции
  • Беременность

2. Ухудшение состояния больных с заболеваниями сердца, появление болей в области сердца, развитие или усиление одышки, возникновение аритмии.

3. Перед любыми оперативными вмешательствами.

4. Заболевания внутренних органов, эндокринных желез, нервной системы, болезней уха, горла, носа, кожные заболевания и т.д. при подозрении на вовлечение сердца в патологический процесс.

5. Экспертная оценка шоферов, пилотов, моряков и т.д.

6. Наличие профессионального риска.

По рекомендации терапевта (кардиолога) для дифференциальной диагностики органических и функциональных изменений сердца проводится электрокардиография с лекарственными пробами (с нитроглицерином, с обзиданом, с калием), а также ЭКГ с гипервентиляцией и ортостатической нагрузкой.

В его честь коллеги составили сборник научных трудов, где была опубликована первая в мире электрокардиограмма, снятая Виллемом Эйнтховеном. К этому дню создатель ЭКГ шёл уже много лет, побуждаемый одновременно любовью к науке и необходимостью вернуть банковский кредит.

Кредит, которому обязаны все сердечники мира, был нужен, чтобы откупиться от распределения. Вышло так: Эйнтховен рано потерял отца, который служил колониальным врачом в Семаранге на острове Ява. Правительство Нидерландов оплачивало учёбу таких сирот в Утрехтском университете при условии, что они также станут работать в колониях. Круг профессий узок: врач, бухгалтер, учитель.

Начало карьеры Эйнтховена

Поскольку Эйнтховена тянуло к естественным наукам, он избрал медицину. Но уже во время практики понял, что рождён не врачом, а скорее физиком. Сперва он пытался примирить эти начала, специализируясь на офтальмологии как самой точной из медицинских наук. Диплом его уже был с открытием. Речь шла об известной оптической иллюзии: если на стене рядом пятна разных цветов, красное и синее, то одно из них кажется более близким. Позднее Кандинский написал об этом целую теорию, на которой зиждилось абстрактное искусство: мол, есть цвета агрессивные, которые как будто стремятся к зрителю (жёлтый, к примеру), а есть «уходящие», как бы отодвигающиеся вглубь картины, вроде синего.

Первый серийный электрокардиограф, который выпускался в Кембридже с 1908 года под наблюдением Эйнтховена.

Диплом с отличием

Электродов с гелем и присосками ещё не изобрели. Для гарантированного контакта с кожей пациент опускал конечности в подсоленную воду.

Снималась разница потенциалов между вершинами так называемого «треугольника Эйнтховена»: правая рука - левая рука (I отведение), правая рука - нога (II отведение), левая рука - нога (III отведение). Сейчас принято накладывать электрод на левую ногу, фотография запечатлела эксперимент с правой.

На верхней поверхности станины расположены основные узлы прибора, в порядке слева направо: источник света, струнный гальванометр, фотокамера (на ней лежит правая рука оператора).

Научный руководитель думал, что дело тут в разной длине волны, но студент Эйнтховен доказал иное. Зрачки у разных людей слегка смещены от центра радужки. Те, у кого зрачки чуть ближе к вискам, и среди них Кандинский, воспринимают синий как «уходящий». А те, чьи зрачки смещены к носу – наоборот.

Работа блестящая, диплом с отличием. И теперь молодого человека ждали колонии.

Эйнтховен - ученый

Однако тут вышел на пенсию завкафедрой гистологии и физиологии Лейденского университета, и впечатлённые открытием Эйнтховена учёные выдвинули его на вакантное место. Всё хорошо, только правительство предъявило Виллему счёт на 6000 гульденов за обучение и грант на работу по оптике. Эта сумма равнялась жалованью профессора за полтора года. И всё же Эйнтховен предпочёл заплатить и стать учёным, чем торчать в далёкой колонии, где каждый день приходится делать одно и то же.

Изобретение как новый социальный уровень

Кредит оказал громадное влияние на всю его жизнь. Была семья, требовавшая больших расходов, и наука, отнимавшая всё время. Поэтому приходилось жить гораздо скромнее коллег. Другие профессора обставляли лаборатории со вкусом за свой счёт. А заходивших к Эйнтховену поражали голые стены. Когда наш герой создал электрокардиографию и в его лабораторию началось паломничество со всего мира, жена в героическом усилии сделать интерьер побогаче повесила всюду кружевные шторки, за которые профессору было неудобно перед гостями. Собственно, и главное своё изобретение Виллем сделал, чтобы вырваться из бедности.

Выступление Уоллера

На четвёртый год своего заведования кафедрой Эйнтховен увидел выступление Огастуса Уоллера, читавшего лекции по физиологии в лондонской больнице Сент-Мэри, той самой, где рожают женщины из британской королевской семьи.

Уоллер наглядно демонстрировал, что сердце - источник слабых токов, импульсы которых регулярно повторяются. Делал он это с помощью капиллярного электрометра. В тонком стеклянном капилляре встречаются ртуть и серная кислота. Электрический ток меняет поверхностное натяжение ртути и граница двух жидкостей ползает по капилляру. Токи сердца самые слабые – в 100 миллионов раз меньше тока в электрической розетке, так что сдвиги видны только в сильную лупу. Тем не менее, они есть, и можно заснять их на движущуюся фотоплёнку. Получается кривая изменения электрического поля сердца.

Феномен демонстрировал бульдог Уоллера по кличке Джимми. Он смирно стоял на столе, его лапы помещались в разных ёмкостях с солёной водой, от которых шли провода к прибору. Опыт привлёк всеобщее внимание. В парламенте тут же нашлись депутаты, желавшие привлечь Уоллера к ответственности за жестокое обращение с животными. Но тот показал на себе, что исследование совершенно безвредно.

Первые работы Виллема Эйнтховена по электрокардиографии

Вверху слева: Виллем Эйнтховен (1860-1927) в 1903 году в своей лаборатории, на заднем плане - команда, обслуживавшая его первый прибор;

Вверху справа: «электрокардиография до ЭКГ», то есть показания ртутного электрометра, регистрирующего изменения электрического поля сердца человека. Чёрно-белый силуэт - линия колебания уровня ртути в капилляре на границе с серной кислотой, ниже - та же кардиограмма, пересчитанная Эйнтховеном с поправкой на инерцию тяжёлой ртути (1895 год), с придуманными им обозначениями зубцов кардиограммы.

Правда, и пользы тоже не было. Ясно, что больные сердца работают не так, как здоровые, но кривая получалась слишком пологой – ртуть тяжела, у неё большая инерция, которая скрадывает все пики на кардиограмме. Уоллер опустил руки, но ему же не надо было отдавать кредит. Эйнтховен взялся употребить прибор в клинике. За пять лет он разработал математический метод коррекции показаний электрометра. Могучие расчёты, с дифференцированием и интегрированием, позволяли воссоздать истинный облик зубцов кардиограммы. В 1895 году Эйнтховен дал им названия, которые они носят до сих пор: зубец P (соответствует возбуждению предсердий), Q (срабатывает межжелудочковая перегородка), высокий зубец R (возбуждение левого желудочка), S и T (возбуждение и расслабление желудочков). Конечно, всякий раз высчитывать кривую для каждого больного нереально – калькуляторов-то не было. Эйнтховен не унывал, надеясь, что пока он осмысляет значение зубцов, люди что-нибудь изобретут.

Изобретение Клемана Адера

И тут в историю кардиологии ворвался человек, не имеющий к медицине никакого отношения. Звали его Клеман Адер. Ему тоже понадобились деньги. Инженер Адер мечтал создать летающую машину тяжелее воздуха. Он сделал планер, похожий на летучую мышь, и разработал лёгкую паровую машину в качестве двигателя. А чтобы оплатить её производство, изобрёл чуткий прибор для регистрации сигналов, передающихся по подводным телеграфным кабелям. Длина лежащих на дне морском кабелей громадная, сопротивление большое, и токи слабые, хоть и посильней, чем в нашем сердце.

Адер придумал струнный гальванометр. Действие его основано на законе Ампера: провод под током в магнитном поле отклоняется. И тем сильней, чем больше ток и мощнее поле. Дёргающаяся от точек и тире проволочка то и дело закрывает отверстие, которое снимается на движущуюся плёнку. Благодаря Адеру скорость передачи сигналов через Атлантику выросла с 400 до 600 в минуту. Правда, сделанный на гонорар за это достижение в 1897 году «авьон» рухнул, пролетев несколько десятков метров – Адер не придумал для него систему управления (с этой задачей справились позднее братья Райт). Зато Эйнтховен приспособил струнный гальванометр для регистрации сигналов сердца.

Лишь проволока Адера не годилась – она была слишком толста. Виллем заменил её посеребрённой кварцевой нитью диаметром всего 2 микрона. Изготавливалась она по экзотической технологии: человек с водородной горелкой плавил кварц, в расплав окуналась стрела, которую другой человек выпускал из лука, так что нить вытягивалась и остывала на лету. Получалась струна, колебавшаяся от сердечных токов так, что выходила вполне современная электрокардиограмма. К большому удовольствию Эйнтховена, она в точности совпала с его расчётами.

Начало заработков

Теперь можно переходить от удовольствий к заработкам: выпускать приборы для диагностики болезни сердца. Эйнтховен обратился в мюнхенскую компанию «Эдельманн». Там с радостью взяли чертежи, и скоро прибор был готов, но тут выяснилось, что никаких отчислений Виллему по немецким законам не полагается. Гальванометр изобрёл Адер, токи сердца засёк Уоллер. Эйнтховен вообще ни при чём.

Выручили голландца связисты: они с удовольствием покупали гальванометры его конструкции для телеграфного сообщения с колониями. В том числе и с теми, от работы в которых Виллем откупался. Контракт с Эдельманном был разорван, но немцы выпустил несколько десятков электрокардиографов. Купили их университеты, где работали учёные, заметившие публикации Эйнтховена.

Деятели науки и техники, создававшие электрокардиографию вместе с Эйнтховеном

Вверху слева: Огастус Дезире Уоллер (1856-1922, стоит справа) демонстрирует в Лондонском Королевском обществе колебания сердца своего бульдога Джимми, 1889 год. Гравюра из Illustrated London News, иллюстрация к статье к 20-летию первой кардиограммы, 1909.

Вверху справа: французский изобретатель Клеман Адер (1841-1925), который в 1897 году изобрёл струнный гальванометр для телеграфистов, чтобы получить средства на создание своего летательного аппарата «Аквилон» (Авьон-III).

Внизу слева: русский, а затем советский физиолог Александр Филиппович Самойлов (1867-1930), сподвижник и личный друг Эйнтховена. Ввёл аббревиатуру ЭКГ, первым заметил, что аномальный зубец P указывает на порок сердца. Ввёл в практику анализ всех трёх стандартных отведений. Самойлов создал первые в России и Москве лаборатории ЭКГ, лично возглавлял центральную лабораторию, развёрнутую в Боткинской больнице.

Внизу справа: британский кардиолог Томас Люьис (1881-1945), сподвижник и личный друг Эйнтховена. Первым засёк на ЭКГ аритмию и большое количество других патологий, признан «отцом клинической электрофизиологии». Обнаружил явление сужения сосудов как реакции на ранение, а также (увы, на собственном примере) роль курения в возникновении сердечно-сосудистых заболеваний.

Самойлов и Эйнтховен

Первым стал профессор Казанского университета Александр Самойлов. Он очень похож на Эйнтховена: тоже рано потерял отца, разочаровался в медицине (поработав на холерной эпидемии 1892 года), ушёл в физиологию. Самойлов сразу же познакомился с Эйнтховеном и они стали друзьями. В Казани впервые был диагностирован по кардиограммепорок сердца, и в первый раз прозвучала аббревиатура "ЭКГ".

К 20-летию первой кардиограммы Самойлов послал Эйнтховену шуточное поздравление, которое просил зачитать вслух струнному гальванометру, так как тот «умеет хорошо и много писать (но не всегда достаточно ясно и порой слишком много) – читать же он совсем не может».

Вот отрывок из этого письма:

«Я почти влюблён в Вас и если я хоть один день не писал с Вами, то чувствую, чего-то не хватает. Я откровенный человек и должен Вам сознаться, что бывали моменты, когда я Вас, уважаемый струнный гальванометр, хотел бы разбить на 1000 кусков… Ваши металлические части никогда меня не раздражали, но струна! Когда, наконец, приступаешь к опыту, то оказывается, что струна не хочет больше проводить или же начинает дрожать, как будто её кто-то испугал или у неё приступ малярии (мы пробовали раз хину, но это не помогло)». А дальше – комплименты юбиляру.

Эйнтховен ответил в том же духе: «Струнный гальванометр в восторге от похвалы, высказанной в его адрес… Он ответил мне, что затруднения, касающиеся струн, могут быть устранены, если выписывать их из Америки, где механики изготовляют их прекрасно. Но во время чтения гальванометр вдруг рассвирепел: «Как это я не умею читать? Это невыносимая ужасная клевета! Разве я не читаю самые сокровенные тайны человеческого сердца?»

Всё это говорилось о первой машине Эйнтховена, занимавшей две комнаты и требовавшей пять человек обслуги. Много с тех пор утекло воды и клетчатой фотобумаги. Эйнтховен получил Нобелевскую премию. Потом не стало его, не стало Самойлова, появились осцилляторы, электролампы, затем транзисторы. Но только спустя 80 лет промышленность породила прибор, который по чувствительности и точности был сравним с той первой громадной машиной, изготовленной кустарным способом.

В разговорах с деятелями советского правительства Самойлов любил приводить этот пример как иллюстрацию отношений науки и промышленности: «..все завоевания техники можно сравнить лишь с крохами со стола науки. Мы должны развивать науку, иначе наступит крах не только науки, но и техники».

Михаил Шифрин