Кого считают создателем клеточной теории иммунитета? Иммунитет. Фагоцитоз и фагоцитарная теория иммунитета Автор клеточной теории иммунитета

Иммунитет -- это защитно-приспособительная реакция организма против различных болезнетворных агентов. В обычном понимании имеется в виду иммунитет к инфекционным болезням. Наука, изучающая иммунитет, называется иммунологией, а реакции сопровождающие выработку иммунитета, -- иммунологическими реакциями. И.И. Мечников так определил иммунитет: «Под невосприимчивостью к заразным болезням надо понимать общую систему явлений, благодаря которым организм может выдерживать нападение болезнетворных микробов».

Различают иммунитет видовой и приобретенный. Видовой иммунитет составляет свойство данного вида животных и передается по наследству. Например, животные не болеют корью, тифами и некоторыми другими болезнями, а человек не болеет многими инфекциями, которыми поражаются животные (чума рогатого скота, собачья чума и др.).

Видовой иммунитет может быть абсолютным и относительным.

Обладая абсолютным иммунитетом, ни животное, ни человек, ни при каких обстоятельствах не заболевают данной болезнью. Так, собаки никогда не болеют корью и другими инфекциями, наблюдающимися у человека. Однако птицы, при обычных условиях не заболевающие сибирской язвой, могут заболеть ею при ослаблении организма в результате охлаждения, голодания и других причин. Следовательно, они обладают относительным иммунитетом к сибирской язве.

В развитии относительного иммунитета большое значение имеют благоприятные социальные условия, а также приобретенные свойства организма, развившиеся в нем путем взаимосвязи с окружающей средой (например, закаливание организма физкультурой).

Приобретенный иммунитет вырабатывается у человека в течение его жизни, обычно после какого-либо инфекционного заболевания.

Осенью 1882 года Мечников вместе с женой Ольгой Николаевной Белокопытовой, другом и помощником во всех делах, уехал в Мессину, где сделал свое наиболее известное открытие.

Однажды, когда Мечников наблюдал под микроскопом за подвижными клетками (амебоцитами) личинки морской звезды, ему пришла в голову мысль, что эти клетки, захватывающие и переваривающие органические частицы, не только участвуют в пищеварении, но и выполняют в организме защитную функцию. Это предположение Мечников подтвердил простым и убедительным экспериментом. Введя в тело прозрачной личинки шип розы, он через некоторое время увидел, что амебоциты скопились вокруг занозы. Клетки, которые либо поглощали, либо обволакивали инородные тела ("вредных деятелей"), попавшие в организм, Мечников назвал фагоцитами, а само явление - фагоцитозом. В следующем, 1883 году, Мечников сделал на съезде естествоиспытателей и врачей в Одессе доклад "О целебных силах организма". Последующие 25 лет жизни он посвятил развитию фагоцитарной теории иммунитета. Для этого он обратился к изучению воспалительных процессов, инфекционных заболеваний и их возбудителей - патогенных микроорганизмов. "До этого зоолог - я сразу сделался патологом", - писал Мечников. Работая над фагоцитарной теорией, Мечников вместе с тем в 1884 и 1885 годах выполнил ряд исследований по сравнительной эмбриологии, считающихся классическими.

До Мечникова господствовало представление о ведущей роли в иммунитете микробов и других чужеродных тел.

Мечников в многочисленных опытах выяснил огромную, подчас ведущую роль макроорганизма в его борьбе с инфекциями. Он поставил многочисленные опыты, чтобы изучить процесс возникновения невосприимчивости у кроликов к микробу свиной холеры, к возбудителю краснухи свиней, к возбудителю сибирской язвы у голубей и крыс, у морских свинок -- к вибриону Мечникова и т. д. Во всех случаях доказано решающее значение фагоцитоза в процессе освобождения организма от проникших в него микробов.

Таким образом, ученый убедительно показал, что активные клетки организма -- лейкоциты в результате своего взаимодействия с микробами или с их продуктами -- токсинами или, наконец, с другими неживыми чужеродными телами специфически изменяют характер и направление своей активности, «меняют свою реактивность». Образно выражаясь, они мобилизуют свои силы и меняют уровень напряжения и активности в соответствии с особенностями и силой «вражеского нападения». «Реакция фагоцитарных клеток, -- писал Мечников, -- совершается вследствие их чувствительности».

У своего друга А.О. Ковалевского Мечников увидел в аквариуме лаборатории тусклых дафний. При изучении выяснилось, что они заполнены спорами грибка Monospora bicuspidata.

Мечников организовал экспериментальное воспроизведение этого факта и наблюдал, как иглообразные споры грибка, словно иголки, проходят через стенки пищеварительного тракта и проникают в полость тела дафнии.

Как же будет «защищаться» раненая дафния против проникших в нее врагов?

Микроскоп дает возможность наблюдать, как разыгрываются «драматические события» в теле рачка-дафнии. Прежде всего, лейкоциты, циркулирующие в большом количестве в теле дафний, совершают «бурный» натиск на «непрошеных гостей». Вокруг каждой споры грибка, как ранее вокруг занозы в личинке морской звезды, скапливаются лейкоциты. Они обволакивают и изолируют каждую спору. Но этого мало. Ведь споры грибка -- не стекло. Лейкоциты дафнии заглатывают их путем внутриклеточного пищеварения, и от спор не остается и следа. Поле битвы очищено. Убирать трупы врагов, по остроумному выражению ученика и продолжателя Мечникова, Безредка, не приходится.

Дафния «победила» споры грибка, хотя она тоже микроскопична. Ранее мутная, она светлеет и снова «здравствует» до очередной инфекции. Но этот счастливый для дафнии исход бывает не всегда. Если вражеских сил (в данном случае спор грибков) окажется больше, чем их могут одолеть образующиеся в теле дафнии лейкоциты, то те споры, которые не заглочены лейкоцитами, успевают прорасти в грибки, и общая инфекция приводит к гибели дафнии.

Таков образный пересказ, близкий к изложению самого Мечникова и его ближайших продолжателей о нескольких интересных экспериментальных эпизодах. Но именно эти эпизоды помогли Мечникову раскрыть ход процессов, лежащих в основе его бессмертного учения о фагоцитозе. Глубоко плодотворное значение фагоцитарной теории прежде всего в том, что закономерности, рассмотренные нами в двух предыдущих экспериментах, подтверждаются в основных чертах на высших животных и на человеке.

Значение в медицине

Велико значение этой теории в медицине. Она по-новому раскрывает сущность воспалительных процессов, как защитных приспособлений организма, лежит в основе борьбы с инфекциями, объясняет рассасывание тканей при явлениях регенерации и т.д.

В Стокгольме в 1908 году Мечников получил Нобелевскую премию за открытия в области иммунитета. Премию за фагоцитарную теорию иммунитета Мечников разделил с выдающимся немецким ученым Эрлихом, который разрабатывал гуморальную теорию иммунитета. Этим как бы подчеркивалось, что обе теории взаимно дополняют одна другую.

Мечников, мысленно оглядываясь на годы изнурительной борьбы, которую ему пришлось вести «в условиях недоверия и жесткой критики», язвительно сказал, что воспоминания о Bipinnaria с занозой, окруженной со всех сторон подвижными клетками, и о дафниях с кровяными шариками, пожирающими колючие споры инфекционных микробов, поддерживали в нем надежду, что его идеи избегнут поражения. История блистательно оправдала его надежды. Учение о фагоцитозе вошло в золотой фонд науки.

Современные исследования о роли вирусных факторов в развитии злокачественных опухолей обязывают с большим вниманием отнестись к этой ценной мысли гениального в своей прозорливости ученого.

Фагоцитоз — процесс активного поглощения клетками организма микробов и других чужеродных частиц (греч. phagos — пожирающий + kytos — клетка), в том числе собственных погибших клеток организма. И.И. Мечников — автор фагоцитарной теории иммунитета — по-казал, что явление фагоцитоза — это проявление внутриклеточного пе-реваривания, которое у низших животных, например, у амеб, является способом питания, а у высших организмов фагоцитоз является меха-низмом защиты. Фагоциты освобождают организм от микробов, а так-же уничтожают старые клетки собственного организма.

По Мечникову, все фагоцитирующие клетки подразделяются на макрофаги и микрофаги. К микрофагам относятся полиморфноядерные гранулоциты крови: нейтрофилы, базофилы, эозинофилы. Макро-фаги — это моноциты крови (свободные макрофаги) и макрофаги раз-личных тканей организма (фиксированные) — печени, легких, соедини-тельной ткани.

Микрофаги и макрофаги происходят из единого предшественни-ка — стволовой клетки костного мозга. Гранулоциты крови — это зрелые короткоживущие клетки. Моноциты периферической крови — не-зрелые клетки и, выходя из кровяного русла, попадают в печень, селе-зенку, легкие и другие органы, где созревают в тканевые макрофаги.

Фагоциты выполняют разнообразные функции. Они поглощают и уничтожают чужеродные агенты: микробы, вирусы, отмирающие клетки самого организма, продукты распада тканей. Макрофаги при-нимают участие в формировании иммунного ответа, во-первых, путем презентации (представления) антигенных детерминант (эпитопов на своей мембране и, во-вторых, пугем выработки биологически актив-ных веществ — интерлейкинов, которые необходимы для регуляции иммунного ответа.

В процессе фагоцитоза различают несколько стадий:

1) приближение и присоединение фагоцита к микробу — осуще-ствляется благодаря хемотаксису — передвижению фагоцита в направ-лении чужеродного объекта. Передвижение наблюдается вследствие понижения поверхностного натяжения клеточной мембраны фагоци-та и образования псевдоподий. Присоединение фагоцитов к микробу происходит благодаря наличию рецепторов на их поверхности,

2) поглощение микроба (эндоцитоз). Мембрана клетки проги-бается, образуется впячивание, в результате формируемся фагосома -фагоцитарная вакуоль. Этот процесс }сшшвается при участии ком-племента и специфических антител. Для фагоцитоза микробов, обладающих антифагоцитарной активностью, участие указанных факторов является необходимым;

3) внутриклеточная инактивация микроба. Фагосома сливается с лизосомой клетки, образуется фаголизосома, в которой накаплива-ются бактерицидные вещества и ферменты, в результате действия которых настутет гибель микроба;

4) переваривание микроба и других фагоцитированных частиц происходит в фаголизосомах.

Фагоцитоз, который при-водит к инактивации микро-ба, то есть включает в себя все четыре стадии, называет-ся завершенным. Незавершен-ный фагоцитоз не приводит к гибели и перевариванию мик-робов. Захваченные фагоцита-ми микробы выживают и даже размножаются внутри клетки (например, гонококки).

При наличии приобретен-ного иммунитета к данному микробу антитела-опсонины специфически усиливают фа-гоцитоз. Такой фагоцитоз называется иммунным. В отношении патогенных бактерий, обладающих антифагоцитарной активностью, например, стафилококков, фагоци-тоз возможен только после опсонизации.

Антигены.

Антигены (греч. anti — против, genos — рождение) — генетически чу-жеродные вещества, которые при попадании в организм вызывают им-мунный ответ. Специфические иммунные реакции, которые могут воз-никать в ответ на антиген, это: синтез антител, появление иммунных лимфоцитов, аллергические реакции, иммунологическая толерантность, иммунологическая память.

Полноценные антигены обладают двумя свойствами: иммуногенностью и специфичностью. Под иммуногенностью понимают способ-ность антигена вызывать в организме иммунный ответ, в частности, образование антител и иммунных лимфоцитов. Специфичность анти-гена выражается в том, что он соединяется только с теми антителами и иммунными лимфоцитами, которые возникли в ответ на его введение.

Неполноценные антигены или гаптены не обладают иммуногеннос-тью, но могут соединяться с готовыми специфическими для них антите-лами. Антитела, специфические для гаптена, вырабатываются при вве-дении в организм гаптена с белком.

Для того, чтобы действовать как антигены, вещества должны быть распознаны макроорганизмом как чужеродные, "не свои", так как обычно антитела к "своим" белкам не образуются. Антигенами могут быть биоиолимерные вещества, чужеродные для данного организма, с большой молекулярной массой, имеющие жесткую химическую струк-туру, образующие колоидный раствор. Это, в основном, белки. Сре-ди антигенов микробного происхождения имеются и небелковые анти-гены — это липополисахариды (ЛПС) клеточной стенки грамотри-цательных бактерий.

Специфичность антигена определяется его детерминантными группами. Это небольшие участки молекулы антигена (эпитоны), располо-женные на ее поверхности. Именно они распознаются как чужерод-ные лимфоцитами (антигенраспознающими, иммунокомпетентными клетками). По химической природе детерминантные группы — это угле-воды, пептиды, липиды, нуклеиновые кислоты. Если отделить их от мо-лекулы-носителя, то они ведут себя как гаптены.

Иммуногенность повышается при введении антигенов с адъювантами (лат. adjuvantis — вспомогающий). В качестве адъюванта часто при-меняется гидроксид алюминия — А1(ОН)3.

Похожая информация:

Поиск на сайте:

Открытие И. И. Мечниковым фагоцитоза. Открытие гуморальных факторов иммунитета. (П. Эрлих, Э. Беринг, Э. Ру и др.). Получение лечебных сывороток.

Третий этап развития микробиологии — иммунологический, с конца 19в. до середины 20в. В этот период изучали состояние защитных сил организма направленных на борьбу с патогенными микроорганизмами. Русский учёный И. И. Мечников разработал учение о фагоцитозе, т. е. о роли белых кровяных телец против чужеродных факторов, разработал основы клеточного иммунитета. Нем. учёный П. Эрлих открыл явление гуморального иммунитета, т. е. наличие антител и тоже ошибочно предполагал, что гуморальный механизм является единственной защитой организма. Э. Беринг впервые применил пассивную иммунизацию путём повторного введения живых микроорганизмов из переболевшего организма в здоровый. Э. Ру изучил возбудителя дифтерии, продуцирующего токсин и его влияние, открыл противодифтерийную сыворотку, сыворотки против ботуллизма.

Четвертый этап современный с середины 20в. по сегодняшний день. Основные его задачи:

1. Развитие науки вирусологии.

2. Создание новых вакцин.

3. Создание новых антибиотиков.

4. Создание иммуномодуляторов (иммуностимуляторы – повышают иммунитет, иммунодепрессанты – подавляют иммунный ответ. (используется в трансплантологии)).

6. Роль отечественных учёных в развитии микробиологии(И. И. Мечников, Г. Н. Габричевский, Д. К. Заболотный, Н. Ф. Гамалея, Л. А. Зильбер, З. В. Ермольева, П. Ф. Здрадовский, В. Д. Тимаков и др.)

И. И. Мечников (см. вопрос 5)

Г. Н. Габричевский – ему принадлежит создание мед. института в Москве, Санкт – Петербурге. Издание учебников по микробиологии.

Н. Ф. Гамалея – изучал возбудителя чумы, разрабатывал меры профилактики и учение об эпидемиологии заболеваний.

Л. А. Зильбер – основоположник вирусногенетической теории опухолей. Доказал на опыте, что определённые виды вирусов вызывают онкогенное перерождение клеток.

З. В. Ермольева – создала первый отечественный антибиотик, разработала ускоренные методы диагностики холеры (экспресс диагностика).

П. Ф. Здрадовский – изучал риккетсии, эпидемиологию сыпных тифов.

В. Д. Тимаков – составил учебник по микробиологии, которым мы сейчас пользуемся.

7. Д. И. Ивановский – основоположник вирусологии. Развитие вирусологии во второй половине 20в. Роль отечественных учёных.

Вирусология – наука о доклеточных формах жизни – вирусах. Вирусология возникла в 1892г. после вклада, который сделал студент 5 курса Санкт-Петербургской ботанической академии Д. И. Ивановский, он доложил о мозаичной болезни табака и сделал вывод о том, что она вызывается чем-то более мелким чем бактерии и носит заразный характер. Живое начало фильтруется через бактериальные фильтры и способно заражать здоровые растения. В спор с ним вступил нем. химик Бейеринг он заявил, что это нечто — это яд (Virus с лат. яд, токсин). Д. И. Ивановский доказал живую природу вирусов в опыте по пассажу заразного материала через восприимчивые организмы. Каждое новое растение заболевало и погибало быстрее. чем предыдущее, т. е. живое начало накапливало и усиливало свою патогенность, а яд при этом уменьшал бы свою концентрацию.

В середине 40гг. изобрели электронный микроскоп и смогли рассмотреть вирусы и определить их структуру. За первые 50 лет было открыто 100 вирусных болезней. а за 10 лет второй половины 20в. уже 1000 вирусов.

Современная вирусология изучает:

1. Новые вирусы (ВИЧ. Эбола).

2. Создаёт вакцины против вирусных заболеваний.

3. Создаёт противовирусные препараты.

4. Изучает геном вирусов с целью использования генной инженерии для получения микроорганизмов с новыми свойствами.

Основные принципы систематики микроорганизмов по Берджи. Таксономические категории; род, вид, штамм. Внутривидовая идентификация бактерий; серовар, фаговар, биовар, эковар, патовар.

Классификация Берджи была создана 1927г. с тех пор она выдержала 9 изданий, потому что многие микроорганизмы были открыты позже. Классификация основана на морфологии, физиологии, биологических и антигенных свойствах. По Берджи все микроорганизмы делятся на три царства:

1. Эукариоты (наличие обособленного ядра) это грибы и простейшие.

2. Прокариоты (отсутствие обособленного ядра) это бактерии, микоплазмы, актиномицеты, риккетсии, хламидии, спирохеты.

3. Вирусы (ДНК и РНК содержащие).

Бактерии делятся по морфологии на кокки, палочки и извитые. По способности окраски по Граму (Гр+ и Гр-).

Таксонометрические категории. Вид – это совокупность особей одинакового генотипа с различными фенотипическими проявлениями и имеющие одного эволюционного родоначальника. Род – это совокупность особей разных видов,но имеющие одного эволюционного родоначальника. (Н-р: Salmonella – Род, Salmonella Typhy – Вид). Штамм – это микроорганизм одного вида, выделенный из разных источников или в разное время. Штаммы обозначаются цифрами (Н-р: E.coli-Штамм №1).

Термин видовой идентификации

Серовар – серологический вариант различный по антигенной структуре внутри одного вида.

Биовар – серологический вариант различный по степени чувствительности котор бактериофагам.

Эковар – представитель одного вида, выделенный из разных экологических сред.

Патовар – патологический вариант представителя вида – возбудитель заболевания.

9. Исследование морфологии микроорганизмов. Методы микроскопии и окраски. Особенности строения Гр+ и Гр- бактерий.

1. Световая иммерсионная микроскопия позволяет рассматривать окрашенный объект. Используется световой микроскоп, иммерсионное масло (1) и иммерсионный объектив (2) с увеличением х90. Принцип метода immersio – погружение. Иммерсионное масло наносится на препарат, в него погружается иммерсионный объектив, в результате этого не происходит рассеивание лучей.

Недостатки метода: разрешающая способность микроскопа не менее 0,2 мкм.

Кто открыл явление фагоцитоза: отвечаем на вопрос

при длине волны ½ l.

2. Фазовоконтрастная микроскопия для изучения живых неокрашенных объектов. Используется световой иммерсионный микроскоп и фазовая пластинка, которая переводит невидимые глазом фазовые колебания (1) в видимые амплитудные (2), путём перемещения волны, проходящей через объект, на ¼ l. вправо или влево. (А) по фазе (негативный контраст). (Б) противофаза (позитивный контраст). Х- амплитуда, Т- время.

3. Люминисцентная микроскопия для изучения свечения объектов, окрашенных флюорохромами. Используется люминисцентный микроскоп, источник освещения (УФЛ). Лучи не проходят через объект, а падают на него. Ультрафиолетовое излучение вызывает выход электронов с орбиталей. Выделяется энергия видимая как свечение. Достоинства: высокая разрешающая способность, возможность специфического свечения (РИФ). Недостатки: дороговизна, малодоступность для практических лабораторий.

4. Электронная микроскопия самый совершенный метод, неограниченная разрешающая способность, можно рассматривать даже атомное строение. Принцип метода: электрический поток проходя через объект между катодом и анодом теряет скорость на аноде. Для регистрации перед анодом фиксируют фотопластинку или фотоэлемент, связанный с осциллографом. Недостатки: недоступность для практических лабораторий.

Методы окраски.

Простая окраска – использование одного красителя (фуксин или метиленовый синий).

Сложная окраска – использование двух или более красителей и дополнительных ингридиентов (по Грамму, по Циль-Нильсену).

Метод окраски по Грамму дифференцирует бактерии на две группы по строению и биохимии клеточной стенки

Различия строения стенки:

Схема окраски по Граму:

Окраска по Циль-Нильсену:

Похожая информация:

Поиск на сайте:

Вопрос защиты организма от неблагоприятных условий интересовал человека всегда, поэтому сложно установить, когда впервые появилась иммунология. Известно, что уже в первом тысячелетии до н.э. в Китае использовали инокуляции содержимого оспенных папул для привития иммунитета здоровым людям. В XI веке Авиценна упоминает о приобретенном иммунитете, и на основе его теории итальянский автор Джироламо Фракасторо пишет масштабный трактат «Зараза» (1546 г.).

Развитие теории иммунитета

В конце XIX века благодаря работе Луи Пастера происходит прорыв в развитии иммунологии. В 1881 году ему удалось выполнить вакцинацию животных против сибирской язвы, но в его теории не хватало приемлемого научного обоснования. В это же время немец Эмиль фон Бернинг доказывает образование антитоксинов у людей, переболевших столбняком или дифтерией, а также эффективность переливания крови от таких людей для образования иммунитета у здоровых людей. Бернинг также исследовал механизмы сывороточной терапии, и его труды положили начало исследованию теории гуморального иммунитета.

Однако ни Пастер, ни Бернинг не смогли предложить достаточно обоснованной теории, описывающей механизмы иммунитета. Основы современного научного подхода к изучению иммунитета были заложены русским ученым Ильей Мечниковым, положившим начало фагоцитарной теории иммунитета. За исследования невосприимчивости в инфекционных болезнях в 1908 году Мечникова удостоили Нобелевской премии, правда, совместно с П.Эрлихом (автор гуморальной теории иммунитета).

Клеточная иммунология Мечникова

Клеточная иммунология Мечникова

Мечников доказал существование в организме особых амебоидных клеток, способных поглощать патогенные микроорганизмы.

Наблюдая за подвижными клетками морской звезды под микроскопом, Илья Ильич обнаружил, что они не только участвуют в процессе пищеварения, но выполняют защитные функции в организме, обволакивая и поглощая инородные частицы. Мечников дал им название «фагоцитов», а сам процесс получил название «фагоцитоз».

В своей теории ученый описал три основных свойства клеток-фагоцитов:

  1. Способность защищать организм от инфекций, а также очищать его от токсинов (включая продукты распада здоровых тканей).
  2. Способность фагоцитов к вырабатыванию ферментов и биологически активных веществ.
  3. Присутствие антигенов на мембране клеток фагоцитов.

Мечников выделил две группы фагоцитов – гранулярные клетки крови (микрофаги) и подвижные лейкоциты (макрофаги).

Благодаря тому, что иммунокомпетентные клетки способны запоминать антиген, представленный макрофагами, в организме вырабатывается иммунитет против чужеродных элементов определенного вида. Поэтому при повторном попадании инфекции соответствующая иммунная реакция, препятствующая развитию патогенных процессов.

Основные задачи иммунологии XXI века

Несмотря на значительный прорыв в исследованиях строения и взаимодействия клеток организма, предложенная Мечниковым фагоцитарная теория остается главной основой современной иммунологии.

В 1937 году начались работы по электрофорезу белков крови, положившие начало изучению иммуноглобулинов, вскоре были открыты основные классы антител (иммуноглобулинов), способных идентифицировать и нейтрализовать чужеродные элементы. Все эти исследования лишь развивают теорию, предложенную Мечниковым, исследуя ее механизмы на более детальном уровне.

Основными вызовами, на которые фагоцитарная теория должна найти ответ, являются вопросы иммунодефицита, лечение онкологических заболеваний, разработка новых вакцин и антиаллергенов.

Перспективными направлениями является изучение механизмов ответной реакции инфекционных микроорганизмов на средства борьбы с ними.

Открытие фагоцитов Мечниковым

Что запускают их модификации, как происходит этот процесс на биохимическом уровне, каким образом на механизмы иммунитета влияет психическое и эмоциональное состояние и другие дополнительные факторы – эти и другие вопросы остаются пока малоизученными и ждут своих открывателей.

Сегодня 8. 07. 2018

Заболевания Фагоцитоз

В ходе развития воспаления реализуется еще один универсальный тканевой механизм неспецифической защиты – фагоцитоз. Явление фагоцитоза было открыто и изучено великим русским ученым И.И.Мечниковым (1883). Итогом этих многолетних работ стала фагоцитарная теория иммунитета͵ за создание которой Мечников был удостоен Нобелœевской премии.

Все клетки, обладающие фагоцитарной активностью И.И.Мечников делит на микрофаги и макрофаги.

Микрофаги: полиморфно-ядерные гранулоциты – нейтрофилы, эозинофилы, базофилы.

Макрофаги: моноциты крови, клетки ретикуло-эндотелиальной системы, объединяющие мигрирующие и фиксированные клетки печени, селœезенки, костного мозга, которые объединœены в систему мононуклеарных фагоцитов.

Фагоциты выполняют в организме несколько функций:

1) они удаляют из организма отмирающие клетки, поглощают и инактивируют микроорганизмы и их продукты, выполняя роль своеобразного санитара, мусорщика.

2) синтезируют некоторые биологически активные вещества, обеспечивающие резистентность организма – как лизоцим, интерферон, компоненты комплемента͵ цитокины и др.

Цитокины — ϶ᴛᴏ гормоноподобные медиаторы, продуцируемые разными клетками организма и способные повлиять на функцию этих или других групп клеток. Цитокины, регулирующие взаимодействия лейкоцитов между собой и другими клетками называют интерлейкинами.

3) эти клетки участвуют в специфическом иммунитете путем представления антигена иммунокомпетентным клеткам.

Фагоцитоз состоит из нескольких последовательных фаз, стадий:

1) хемотаксис-приближение фагоцита к объекту;

2) адгезия — адсорбция поглощаемого микроорганизма чужеродного вещества на поверхности фагоцита;

3) эндоцитоз – поглощение чужеродного вещества путем инвагинации клеточной мембраны с образованием фагосомы.

4) внутриклеточное переваривание – происходит слияние фагосомы с лизосомой клетки, с образованием фаголизосомы и переваривание чужеродного вещества в фаголизосоме с помощью уферментов.(табл.7)

Внутриклеточные лизосомы содержат около 40 различных ферментов способных переварить практически любое вещество. Эти стадии характерны для завершенного фагоцитоза. Некоторые бактерии, вирусы, простейшие блокируют ферментативную активность фагоцита и микроорганизмы не только не погибают, не разрушаются, но и размножаются в фагоцитах. Такой процесс принято называть незавершенным фагоцитозом.

Факторы стимулирующие фагоцитоз – антитела опсонины, комплемент, иммуноглобулины, медиаторы-лимфокины. Ускоряют фагоцитоз также электролиты, соли Са, Mg, адреналин, гистамин. Угнетают фагоцитоз-ацетилхолин, серотонин, антигистаминные вещества кортикостероиды.

В течение второй половины XIX века врачами и биологами того времени активно исследовалась роль патогенных микроорганизмов в процессе развития инфекционных болезней, а также возможность формировать искусственную невосприимчивость к ним. Эти исследования привели к изучению фактов о естественной защите организма от инфекций. Пастер предложил научному сообществу идею так называемой "исчерпанной силы". Согласно этой теории, вирусная невосприимчивость является таким состоянием, при котором человеческий организм не является благотворной питательной средой для инфекционных агентов. Однако эта идея не могла объяснить целый ряд практических наблюдений.

Мечников: клеточная теория иммунитета

Эта теория появилась в 1883 году. Создатель клеточной теории иммунитета опирался на учение Чарльза Дарвина и основывался на изучении процессов пищеварения у животных, которые располагаются на различных ступенях эволюционного развития. Автор новоявленной теории обнаружил некое сходство во внутриклеточном переваривании веществ у клеток энтодермы, амеб, тканевых макрофагов и моноцитов. Собственно, иммунитета создал известнейший русский биолог Илья Мечников. Его работы в этой области продолжались достаточно долго. Начало им было положено еще в итальянском городе Мессина, в котором микробиолог наблюдал за поведением и личинок

Патолог обнаружил, что блуждающие клетки наблюдаемых созданий чужеродные тела окружают, а затем поглощают их. Кроме того, они рассасывают и следом уничтожают те ткани, которые не нужны организму более. Он приложил немало усилий для разработки своей концепции. Создатель клеточной теории иммунитета ввел, собственно, понятие «фагоциты», выведенное от греческих слов «фагес» - поедать и «китос» - клетка. То есть новый термин буквально означал процесс поедания клеток. К идее таких фагоцитов ученый пришел несколько ранее, когда изучал внутриклеточное пищеварение в различных клетках соединительной ткани у беспозвоночных: губок, амеб и прочих.

У представителей высшего животного мира самыми типичными фагоцитами могут быть названы белые кровяные тельца, то есть лейкоциты. Позднее создатель клеточной теории иммунитета предложил разделять такие клетки на макрофаги и микрофаги. Правильность такого разделения подтверждали достижения ученого П. Эрлиха, который дифференцировал разные типы лейкоцитов посредством окраски. В своих классических работах, посвященных патологии воспаления, создатель клеточной теории иммунитета сумел доказать роль фагоцитирующих клеток в процессе элиминации патогенов. Уже в 1901 году вышел в мир его фундаментальный труд о невосприимчивости к инфекционным болезням. Кроме самого Ильи Мечникова, значительный вклад в развитие и распространение теории фагоцитарного иммунитета внесли И.Г. Савченко, Ф.Я. Чистович, Л.А. Тарасевич, А.М. Березка, В.И. Исаев и ряд других исследователей.

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Биологический факультет

Кафедра биохимии и биотехнологии

Реферат на тему:

«Роль Мечникова в развитии представлений о фагоцитозе»

Выполнила:

студент IV курса ОЗО

Сазанова К.В.

Мечников внёс огромный вклад в развитие иммунологии. Он обосновал учение о фагоцитозе и фагоцитах. Доказал, что фагоцитоз — явление универсальное, наблюдается у всех животных, включая простейших, и проявляется по отношению ко всем чужеродным веществам (бактерии, органические частицы и т. д.). Теория фагоцитоза заложила краеугольный камень клеточной теории иммунитета и процесса иммуногенеза в целом с учетом клеточных и гуморальных факторов. За разработку теорий фагоцитоза И. И. Мечникову в 1908 г. присуждена Нобелевская премия. Л. Пастер на своем портрете, подаренном И. И. Мечникову, написал: «На память знаменитому Мечникову — творцу фагоцитарной теории».

В первый период научной деятельности И. И. Мечников (до 1883 года) занимался преимущественно зоологическими и эмбриологическими исследованиями простейших животных, от одноклеточных организмов до сложно устроенных живых существ. Он установил не только последовательные стадии развития яйцеклетки и низших животных, но и смог, пользуясь сравнительно-аналитическим методом, доказать цепь постепенных превращений эмбрионов у беспозвоночных. В дальнейших исследованиях Мечников показал, что у позвоночных животных эмбрионы формируются приблизительно в той же последовательности и проходят те же стадии развития, что и у беспозвоночных. Отсюда следовал вывод: существует несомненная родственная анатомо-физиологическая связь между всеми живыми организмами, в том числе между полостными и бесполостными животными. Эти исследования дали новые доказательства в пользу эволюционной теории Дарвина. Исследуя в 1865 году низших червей — земляных планарий, И. И. Мечников обратил внимание на то, что у них пищеварение осуществляется всегда внутриклеточно, поскольку они не обладают пищеварительной полостью. Спустя 10 лет, изучая в 1875 году различные виды губок, он убедился в том, что процессы внутриклеточного пищеварения происходят с помощью особых подвижных клеток. Накапливая все больше и больше таких фактов, И. И. Мечников установил, что внутриклеточное пищеварение имеется у низших червей, кишечнополостных, иглокожих, у некоторых других видов животных. Он сделал вывод о том, что подвижные клетки, осуществляющие внутриклеточное пищеварение, могут играть и роль защиты организма от вредных микробов. Для решения вопроса, могут ли подвижные клетки защищать сложные многоклеточные организмы от различных вредных воздействий, он поставил следующий опыт: ввел в прозрачное тело личинки морской звезды шип розы и проследил, будет ли шип окружен подвижными клетками и сколь скоро они способны противодействовать вредным влияниям внешней среды. Шип розы, погруженный в тело морской звезды, вскоре оказался облепленным подвижными клетками, стремящимися преодолеть его вредное воздействие на тело морской звезды. Продолжая наблюдения, И. И. Мечников сделал вывод, что в многоклеточных организмах подвижные клетки сложных организмов поглощают и переваривают вредные для организма частицы и вещества, которые получили название фагоцитов, или «клеток-пожирателей». Обращаясь впоследствии к вопросам патологии человека, И. И. Мечников убедился в том, что заноза, введенная под кожу, вызывает воспалительную реакцию, а нередко и нагноение, причем к очагу воспаления устремляется огромное количество подвижных клеток, преимущественно лейкоцитов. И поскольку воспаление связано с проникновением в организм патогенных микробов, а сама воспалительная реакция протекает при непременном участии лейкоцитов и других подвижных клеток, из этого следует вывод, что воспаление это своего рода защитная фагоцитарная реакция организма. Фагоцитарные клетки выполняют роль защитников организма от патогенных микробов, благодаря чему воспаление носит характер защитной реакции. Эти данные, полученные И. И. Мечниковым, имели огромное значение для общей патологии. Течение инфекционной болезни, ее исход зависят от того, насколько энергично и успешно фагоциты преодолевают деятельность патогенных микробов, проникших в организм. С помощью многочисленных, тщательно продуманных экспериментов И. И. Мечников обосновал положение, что степенью фагоцитарной активности лейкоцитов и неподвижных клеток организма, находящихся в костном мозгу, печени, селезенке и в соединительной ткани, определяется состояние невосприимчивости (иммунитет) организма к инфекциям. Первые основы фагоцитарной теории иммунитета были представлены И. И. Мечниковым в его докладе «О целебных силах организма», с которым он выступил на съезде русских врачей и естествоиспытателей, состоявшемся в 1883 году в Одессе. Мечников провел огромное количество экспериментов, чтобы выяснить роль фагоцитов в борьбе организма с инфекцией. Он установил, что фагоцитарной активностью у высших позвоночных животных обладают не только микрофаги, то есть подвижные белые кровяные клетки (лейкоциты), но и макрофаги — большие неподвижные клетки, фиксированные в костном мозгу, печени, селезенке и в соединительной ткани. Факты, характеризующие защитную природу воспаления и роль фагоцитоза в процессах невосприимчивости организма к инфекциям, были описаны И. И. Мечниковым во множестве научных работ, важнейшие из которых «Лекции о сравнительной патологии воспаления» (1892) и «Невосприимчивость к инфекционным болезням» (1901).

фагоцитоз защита иммунитет мечников

Механические факторы . Кожа и слизистые оболочки механически препятствуют проникновению микроорганизмов и других антигенов в организм. Последние все же могут попадать в организм при заболеваниях и повреждениях кожи (травмы, ожоги, воспалительные заболевания, укусы насекомых, животных и т. д.), а в некоторых случаях и через нормальную кожу и слизистую оболочку, проникая между клетками или через клетки эпителия (например, вирусы). Механическую защиту осуществляет также реснитчатый эпителий верхних дыхательных путей, так как движение ресничек постоянно удаляет слизь вместе с попавшими в дыхательные пути инородными частицами и микроорганизмами.

Физико-химические факторы . Антимикробными свойствами обладают уксусная, молочная, муравьиная и другие кислоты, выделяемые потовыми и сальными железами кожи; соляная кислота желудочного сока, а также протеолитические и другие ферменты, имеющиеся в жидкостях и тканях организма. Особая роль в антимикробном действии принадлежит ферменту лизоциму. Этот протеолитический фермент получил название «мурамидаза», так как разрушает клеточную стенку бактерий и других клеток, вызывая их гибель и способствуя фагоцитозу. Лизоцим вырабатывают макрофаги и нейтрофилы. Содержится он в больших количествах во всех секретах, жидкостях и тканях организма (кровь, слюна, слезы, молоко, кишечная слизь, мозг и т. д.). Снижение уровня фермента приводит к возникновению инфекционных и других воспалительных заболеваний. В настоящее время осуществлен химический синтез лизоцима, и он используется как медицинский препарат для лечения воспалительных заболеваний.

Иммунобиологические факторы

Гуморальные факторы неспецифической резистентности состоят из разнообразных белков, содержащихся в крови и жидкостях организма. К ним относятся белки системы комплемента, интерферон, трансферрин, в-лизины, белок пропердин, фибронектин и др.

Белки системы комплемента обычно неактивны, но приобретают активность в результате последовательной активации и взаимодействия компонентов комплемента. Интерферон оказывает иммуномодулирующий, пролиферативный эффект и вызывает в клетке, инфицированной вирусом, состояние противовирусной резистентности. в-лизины вырабатываются тромбоцитами и обладают бактерицидным действием. Трансферрин конкурирует с микроорганизмами за необходимые для них метаболиты, без которых возбудители не могут размножаться. Белок пропердин участвует в активации комплемента и других реакциях. Сывороточные ингибиторы крови, например р-ингибиторы (р-липопротеины), инактивируют многие вирусы в результате неспецифической блокады их поверхности.

клетки , способные к фагоцитозу, а также клетки с цитотоксической активностью, называемые естественными киллерами, или NK-клетками. NK-клетки представляют собой особую популяцию лимфоцитоподобных клеток (большие гранулосодержащие лимфоциты), обладающих цитотоксическим действием против чужеродных клеток (раковых, клеток простейших и клеток, пораженных вирусом). Видимо, NK-клетки осуществляют в организме противоопухолевый надзор.

Список литературы

Д. И. Маянский, Клетка Купфера и система мононуклеарных фагоцитов, Москва, 1983

Методы изучения in vitro клеточного иммунитета, под ред. Блума и Глэйда, Москва,1974

И. И. Мечников, Лекции по сравнительной патологии воспаления, Москва, 1947

Размещено на Allbest.ru

И.И. Мечников — основоположник теории иммунитета

Жизненный и творческий путь Ильи Ильича Мечникова – выдающегося русского ученого-биолога. Вклад Мечникова в развитие иммунологии. Фагоцитарная теория иммунитета. Развитие идей И.И. Мечникова в России и за рубежом, их практическое воплощение в жизнь.

реферат , добавлен 25.05.2017

Виды и механизм иммунитета

Иммунитет – способ защиты организма от болезнетворных микроорганизмов за счет выработки антител. Обзор схемы клеточного и гуморального иммунитета. Нарушения фагоцитарной системы. Методы оценки иммунитета. Реакция иммунного гемолиза и цитотоксический тест.

презентация , добавлен 11.11.2014

Мечников Илья Ильич: великий учёный — борец за здоровье человека

Детство Мечникова И.И. и становление его как учёного в Харьковском университете. Фагоцитарная теория иммунитета и получение Нобелевской премии. Руководство Одесской бактериологической станцией. Научное наследие учёного и его «Этюды о природе человека».

реферат , добавлен 19.04.2012

Клетки иммунологии

Система иммунитета организма и ее функции. Виды клеток иммунной системы (лимфоциты, фагоциты, гранулярные лейкоциты, тучные клетки, некоторые эпителиальные и ретикулярные клетки). Селезенка как фильтр крови. Клетки-убийцы как мощное оружие иммунитета.

презентация , добавлен 13.12.2015

Факторы врожденного иммунитета и их роль в иммунном ответе

Обзор механизмов лимфоидного аппарата адаптивного иммунитета. Система образования кининов. Рецепторы клеток врожденной иммунной системы. Характеристика сигналов и их реализации. Особенности взаимодействия плазменных белков, их участие в иммунных реакциях.

курсовая работа , добавлен 02.03.2013

Факторы неспецифической резистентности организма, внешние и внутренние барьеры

Резистентность и реактивность организма. Гуморальные и клеточные факторы неспецифической резистентности. Фагоцитоз: понятие, основные стадии. Естественные клетки киллеры и белки острой фазы. Лизоцим, серкеторный иммуноглобулин. Цитокины и интерфероны.

презентация , добавлен 15.02.2014

Что такое иммунитет и как его повысить?

Понятие и виды иммунитета, назначение иммунной системы. Факторы и признаки ослабления иммунитета, методы его повышения. Механизм действия иммунитета: макрофаги, Т-хэлперы, В-лимфоциты, выработка иммуноглобулинов (антител), Т-супрессоры, клетки-киллеры.

реферат , добавлен 09.02.2009

Общая реактивность и резистентность организма животных

Реагирование организма на изменения жизнедеятельности под воздействием различных факторов окружающей среды. Факторы, характеризующие реактивность. Классификация реактивности. Устойчивость организма против различных внешних болезнетворных воздействий.

реферат , добавлен 10.05.2012

Виды и функции иммунитета. Пектиновое и анаэробное брожение клетчатки

Исследование роли микроорганизмов в процессах аммонификации, нитрофикации, денитрификации. Виды иммунитета — реакции организма, направленной на его защиту от внедрения чужеродного материала. Разложение пектиновых веществ. Анаэробное брожение клетчатки.

контрольная работа , добавлен 19.05.2012

Клеточная теория

Клетка как единая система сопряженных функциональных единиц. Гомологичность клеток. Размножение прокариотических и эукариотических клеток. Роль отдельных клеток во многоклеточном организме. Разнообразие клеток в пределах одного многоклеточного организма.

реферат , добавлен 28.06.2009

Роль Мечникова в учении об иммунитете

Мечников внёс огромный вклад в развитие иммунологии. Он обосновал учение о фагоцитозе и фагоцитах. Доказал, что фагоцитоз — явление универсальное, наблюдается у всех животных, включая простейших, и проявляется по отношению ко всем чужеродным веществам (бактерии, органические частицы и т. д.). Теория фагоцитоза заложила краеугольный камень клеточной теории иммунитета и процесса иммуногенеза в целом с учетом клеточных и гуморальных факторов.

За разработку теорий фагоцитоза И. И. Мечникову в 1908 г. присуждена Нобелевская премия. Л. Пастер на своем портрете, подаренном И. И. Мечникову, написал: «На память знаменитому Мечникову - творцу фагоцитарной теории».

В первый период научной деятельности И.

И. Мечников (до 1883 года) занимался преимущественно зоологическими и эмбриологическими исследованиями простейших животных, от одноклеточных организмов до сложно устроенных живых существ.
Он установил не только последовательные стадии развития яйцеклетки и низших животных, но и смог, пользуясь сравнительно-аналитическим методом, доказать цепь постепенных превращений эмбрионов у беспозвоночных.

В дальнейших исследованиях Мечников показал, что у позвоночных животных эмбрионы формируются приблизительно в той же последовательности и проходят те же стадии развития, что и у беспозвоночных. Отсюда следовал вывод: существует несомненная родственная анатомо-физиологическая связь между всеми живыми организмами, в том числе между полостными и бесполостными животными. Эти исследования дали новые доказательства в пользу эволюционной теории Дарвина.

Исследуя в 1865 году низших червей - земляных планарий, И. И. Мечников обратил внимание на то, что у них пищеварение осуществляется всегда внутриклеточно, поскольку они не обладают пищеварительной полостью. Спустя 10 лет, изучая в 1875 году различные виды губок, он убедился в том, что процессы внутриклеточного пищеварения происходят с помощью особых подвижных клеток.

Накапливая все больше и больше таких фактов, И.

И. Мечников установил, что внутриклеточное пищеварение имеется у низших червей, кишечнополостных, иглокожих, у некоторых других видов животных.

Он сделал вывод о том, что подвижные клетки, осуществляющие внутриклеточное пищеварение, могут играть и роль защиты организма от вредных микробов.

Для решения вопроса, могут ли подвижные клетки защищать сложные многоклеточные организмы от различных вредных воздействий, он поставил следующий опыт: ввел в прозрачное тело личинки морской звезды шип розы и проследил, будет ли шип окружен подвижными клетками и сколь скоро они способны противодействовать вредным влияниям внешней среды.

Шип розы, погруженный в тело морской звезды, вскоре оказался облепленным подвижными клетками, стремящимися преодолеть его вредное воздействие на тело морской звезды. Продолжая наблюдения, И. И. Мечников сделал вывод, что в многоклеточных организмах подвижные клетки сложных организмов поглощают и переваривают вредные для организма частицы и вещества, которые получили название фагоцитов, или «клеток-пожирателей».
Обращаясь впоследствии к вопросам патологии человека, И.

И. Мечников убедился в том, что заноза, введенная под кожу, вызывает воспалительную реакцию, а нередко и нагноение, причем к очагу воспаления устремляется огромное количество подвижных клеток, преимущественно лейкоцитов.

И поскольку воспаление связано с проникновением в организм патогенных микробов, а сама воспалительная реакция протекает при непременном участии лейкоцитов и других подвижных клеток, из этого следует вывод, что воспаление это своего рода защитная фагоцитарная реакция организма.

Фагоцитарные клетки выполняют роль защитников организма от патогенных микробов, благодаря чему воспаление носит характер защитной реакции.

Эти данные, полученные И. И. Мечниковым, имели огромное значение для общей патологии. Течение инфекционной болезни, ее исход зависят от того, насколько энергично и успешно фагоциты преодолевают деятельность патогенных микробов, проникших в организм. С помощью многочисленных, тщательно продуманных экспериментов И. И. Мечников обосновал положение, что степенью фагоцитарной активности лейкоцитов и неподвижных клеток организма, находящихся в костном мозгу, печени, селезенке и в соединительной ткани, определяется состояние невосприимчивости (иммунитет) организма к инфекциям.

Первые основы фагоцитарной теории иммунитета были представлены И.

Фагоцитарная теория иммунитета

И. Мечниковым в его докладе «О целебных силах организма», с которым он выступил на съезде русских врачей и естествоиспытателей, состоявшемся в 1883 году в Одессе. Мечников провел огромное количество экспериментов, чтобы выяснить роль фагоцитов в борьбе организма с инфекцией.
Он установил, что фагоцитарной активностью у высших позвоночных животных обладают не только микрофаги, то есть подвижные белые кровяные клетки (лейкоциты), но и макрофаги - большие неподвижные клетки, фиксированные в костном мозгу, печени, селезенке и в соединительной ткани.

Факты, характеризующие защитную природу воспаления и роль фагоцитоза в процессах невосприимчивости организма к инфекциям, были описаны И.

И. Мечниковым во множестве научных работ, важнейшие из которых «Лекции о сравнительной патологии воспаления» (1892) и «Невосприимчивость к инфекционным болезням» (1901).

Неспецифические факторы защиты организма

Механические факторы . Кожа и слизистые оболочки механически препятствуют проникновению микроорганизмов и других антигенов в организм. Последние все же могут попадать в организм при заболеваниях и повреждениях кожи (травмы, ожоги, воспалительные заболевания, укусы насекомых, животных и т.

д.), а в некоторых случаях и через нормальную кожу и слизистую оболочку, проникая между клетками или через клетки эпителия (например, вирусы). Механическую защиту осуществляет также реснитчатый эпителий верхних дыхательных путей, так как движение ресничек постоянно удаляет слизь вместе с попавшими в дыхательные пути инородными частицами и микроорганизмами.

Физико-химические факторы . Антимикробными свойствами обладают уксусная, молочная, муравьиная и другие кислоты, выделяемые потовыми и сальными железами кожи; соляная кислота желудочного сока, а также протеолитические и другие ферменты, имеющиеся в жидкостях и тканях организма.

Особая роль в антимикробном действии принадлежит ферменту лизоциму. Этот протеолитический фермент получил название «мурамидаза», так как разрушает клеточную стенку бактерий и других клеток, вызывая их гибель и способствуя фагоцитозу. Лизоцим вырабатывают макрофаги и нейтрофилы.

Содержится он в больших количествах во всех секретах, жидкостях и тканях организма (кровь, слюна, слезы, молоко, кишечная слизь, мозг и т.

д.). Снижение уровня фермента приводит к возникновению инфекционных и других воспалительных заболеваний. В настоящее время осуществлен химический синтез лизоцима, и он используется как медицинский препарат для лечения воспалительных заболеваний.

Иммунобиологические факторы . В процессе эволюции сформировался комплекс гуморальных и клеточных факторов неспецифической резистентности, направленных на устранение чужеродных веществ и частиц, попавших в организм.

Гуморальные факторы неспецифической резистентности состоят из разнообразных белков, содержащихся в крови и жидкостях организма.

К ним относятся белки системы комплемента, интерферон, трансферрин, β-лизины, белок пропердин, фибронектин и др.

Белки системы комплемента обычно неактивны, но приобретают активность в результате последовательной активации и взаимодействия компонентов комплемента.

Интерферон оказывает иммуномодулирующий, пролиферативный эффект и вызывает в клетке, инфицированной вирусом, состояние противовирусной резистентности. β-лизины вырабатываются тромбоцитами и обладают бактерицидным действием. Трансферрин конкурирует с микроорганизмами за необходимые для них метаболиты, без которых возбудители не могут размножаться. Белок пропердин участвует в активации комплемента и других реакциях.

Сывороточные ингибиторы крови, например р-ингибиторы (р-липопротеины), инактивируют многие вирусы в результате неспецифической блокады их поверхности.

Отдельные гуморальные факторы (некоторые компоненты комплемента, фибронектин и др.) вместе с антителами взаимодействуют с поверхностью микроорганизмов, способствуя их фагоцитозу, играя роль опсонинов.

Большое значение в неспецифической резистентности имеют клетки , способные к фагоцитозу, а также клетки с цитотоксической активностью, называемые естественными киллерами, или NK-клетками.

NK-клетки представляют собой особую популяцию лимфоцитоподобных клеток (большие гранулосодержащие лимфоциты), обладающих цитотоксическим действием против чужеродных клеток (раковых, клеток простейших и клеток, пораженных вирусом).

Видимо, NK-клетки осуществляют в организме противоопухолевый надзор.

В поддержании резистентности организма имеет большое значение и нормальная микрофлора организма.

Лекция №12 Тема «Учение об иммунитете»

Лекция № 12

Тема «Учение об иммунитете»

  1. Иммунитет: виды и формы
  2. механизмы клеточного, гуморального иммунного ответов
  3. Иммунодефицитные состояния.
  4. Факторы неспецифической противомикробной защиты.
  5. Специфические факторы защиты организма.
  6. Понятие об антигенах

Конспект лекции.

Понятие иммунитет обозначает невосприимчивость организма ко всяким генетически чужеродным агентам, в том числе и болезнетворным микроорганизмам и их ядам (от лат.

immunias – освобождение от чего-либо).

При попадании в организм генетически чужеродных структур (антигенов) приходит в действие целый ряд механизмов и факторов, которые распознают и обезвреживают эти чужеродные для организма субстанции.

Система органов и тканей, осуществляющая защитные реакции организма против нарушения постоянства его внутренней среды (гомеостаза), называется иммунной системой.

Наука об иммунитете – иммунология изучает реакции организма на чужеродные вещества, в том числе и микроорганизмы; реакции организма на чужеродные ткани (совместимость) и на злокачественные опухоли; определяет иммунологические группы крови т.д.

основы иммунологии были заложены стихийными наблюдениями древних о возможности искусственного предохранения человека от заразной болезни. Наблюдения за людьми, находившимися в очаге эпидемии, привели к заключению, что заболевают не все.

Так, не болеют чумой выздоровевшие от этой болезни; корью обычно болеют один раз в детстве; перенесшие коровью оспу, не болеют натуральной и т. п.

Виды иммунитета

Наследственный (видовой) иммунитет

Наследственный (видовой) иммунитет-это наиболее прочная и совершенная форма невосприимчивости, которая обусловлена передающимися по наследству факторами резистентности (устойчивости).

Известно, что человек невосприимчив к чуме собак и рогатого скота, а животные не болеют холерой и дифтерией.

Однако наследственный иммунитет не абсолютен; создавая особые, неблагоприятные условия для макроорганизма, можно изменить его невосприимчивость? Например, перегрев, охлаждение, авитаминоз, действие гормонов приводят к развитию заболевания, которое обычно человеку или животному несвойственно.

Так, Пастер, охлаждая кур, вызывал у них при искусственном заражении заболевание сибирской язвой, которой они в обычных условиях не болеют.

Приобретенный иммунитет

Приобретенный иммунитет у человека формируется в течение жизни, по наследству он не передается.

Естественный иммунитет. Активный иммунитет формируется после перенесенного заболевания (его называют постинфекционным).

В большинстве случаев он длительно сохраняется: после кори, ветряной оспы, чумы и др. Однако после некоторых заболеваний длительность иммунитета невелика и не превышает одного года (грипп, дизентерия и др.). Иногда естественный активный иммунитет развивается без видимого заболевания. Он формируется в результате скрытой (латентной) инфекции или многократного инфицирования небольшими дозами возбудителя, не вызывающими явно выраженного заболевания (дробная, бытовая иммунизация).

Пассивный иммунитет -это иммунитет новорожденных (плацентарный), приобретенный ими через плаценту в период внутриутробного развития.

Новорожденные могут также получить иммунитет с молоком матери. Этот вид иммунитета непродолжителен и к 6-8 мес, как правило, исчезает. Однако значение естественного пассивного иммунитета велико-он обеспечивает невосприимчивость грудных детей к инфекционным заболеваниям.

Искусственный иммунитет. Активный иммунитет человек приобретает в результате иммунизации (прививок).

Этот вид иммунитета развивается после введения в организм бактерий, их ядов, вирусов, ослабленных или убитых разными способами (прививки против коклюша, дифтерии, оспы).

При этом в организме происходит активная перестройка, направленная на образование веществ, губительно действующих на возбудителя и его токсины (антитела). Происходит также изменение свойств клеток, уничтожающих микроорганизмы и продукты их жизнедеятельности. Развитие активного иммунитета происходит постепенно в течение 3-4 нед и сохраняется он сравнительно длительное время - от 1 года до 3-5 лет.

Пассивный иммунитет создают введением в организм готовых антител.

Этот вид иммунитета возникает сразу после введения антител (сывороток и иммуноглобулинов), но сохраняется всего 15-20 дней, после чего антитела разрушаются и выводятся из организма.

Понятие «местный иммунитет» было введено А. М. Безредкой. Он считал, что отдельные клетки и ткани организма обладают определенной восприимчивостью.

Иммунизируя их, создают как бы барьер для проникновения возбудителей инфекции. В настоящее время доказано единство местного и общего иммунитета. Но значение невосприимчивости отдельных тканей и органов к микроорганизмам несомненно.

Помимо указанного выше разделения иммунитета по происхождению, различают формы иммунитета, направленные на разные антигены.

Антимикробный иммунитет развивается при заболеваниях, обусловленных различными микроорганизмами или при введении корпускулярных вакцин (из живых ослабленных или убитых микроорганизмов.

Антитоксический иммунитет вырабатывается по отношению бактериальным ядам – токсинам.

Антивирусный иммунитет формируется после вирусных заболеваний.

Этот вид иммунитета большей частью длительный и стойкий (корь, ветряная оспа и др.). Антивирусный иммунитет развивается также при иммунизации вирусными вакцинами.

Кроме того иммунитет можно разделить в зависимости от периода освобождения организма от возбудителя. Стерильный иммунитет. Большинство возбудителей исчезает из организма при выздоровлении человека. Этот вид иммунитета называют стерильным (корь, оспами др.).

Нестерильный иммунитет. Восприимчивость к возбудителю инфекции сохраняется только в период пребывания его в организме хозяина. Такой иммунитет называют нестерильным или инфекционным. Этот вид иммунитета наблюдают при туберкулезе, сифилисе и некоторых других инфекциях.

Невосприимчивость человека к инфекционным заболеваниям обусловлена совместным действием неспецифических и специфических факторов защиты.

Неспецифическими называют врожденные свойства организма, которые способствуют уничтожению самых различных микроорганизмов на поверхности тела человека и в полостях его организма.
Развитие специфических факторов защиты происходит после соприкосновения организма с возбудителями или токсинами; действие этих факторов направленно только против этих возбудителей или их токсинов.

Неспецифические факторы защиты организма.

Существуют механические, химические и биологические факторы, предохраняющие организм от вредных воздействий различных микроорганизмов.

Неповрежденная кожа является барьером для проникновения микроорганизмов. При этом имеет значение механические факторы: отторжение эпителия и выделения сальных и потовых желез, которые способствуют удалению микроорганизмов с кожи.

Роль химических факторов защиты также выполняют выделения желез кожи (сальных и потовых).

Биологические факторы защиты обусловлены губительным воздействием нормальной микрофлоры кожи на патогенные микроорганизмы.

Слизистые оболочки разных органов являются одним из барьеров на пути проникновения микроорганизмов. В дыхательных путях механическая защита осуществляется с помощью мерцательного эпителия. Движение ресничек эпителия верхних дыхательных путей постоянно передвигает пленку слизи вместе с различными микроорганизмами по направлению к естественным отверстиям: ротовой полости и носовым ходам.

Такое же воздействие на бактерии оказывают волоски носовых ходов. Кашель чихание способствуют удалению микроорганизмов, предотвращают их аспирацию(вдыхание).

В слезах, слюне, материнском молоке и других жидкостях организма содержится лизоцим. Он оказывает губительное (химическое) действие на микроорганизмы. Также влияет на микроорганизмы кислая среда желудочного содержимого.

Нормальная микрофлора слизистых оболочек, как фактор биологической защиты, является антагонистом патогенных микроорганизмов.

Воспаление - реакция макроорганизма на чужеродные частицы, проникающие в его внутреннюю среду. Одной из причин воспаления является внедрение в организм возбудителей инфекции. Развитие воспаления приводит к уничтожению микроорганизмов или освобождению от них.

Воспаление характеризуется нарушением циркуляции крови и лимфы в очаге поражения.

Оно сопровождается повышением температуры, отеком, краснотой и болевыми ощущениями.

Клеточные факторы неспецифической защиты

Фагоцитоз

Одним из основных механизмов воспаления является фагоцитоз - процесс поглощения бактерий.

Явление фагоцитоза впервые описано И.

И. Мечниковым.

Фагоцитарной активностью обладают различные клетки организма (лейкоциты крови, эндотелиальные клетки кровеносных сосудов). Наиболее выражена эта активность у подвижных полиморфноядерных лейкоцитов, моноцитов крови и тканевых макрофагов, в меньшей степени - у клеток костного мозга. Все одноядерные фагоцитирующие клетки (и их костномозговые предшественники) объединены в систему мононуклеарных фагоцитов (СМФ).

Фагоцитирующие клетки, имеют лизосомы, в которых находится более 25 различных гидролитических ферментов и белков, обладающих антибактериальными свойствами.

Стадии фагоцитоза.

Этап1-приближение фагоцита к объекту за счет химического влияния последнего. Это движение называют положительным хемотаксисом (в сторону объекта).

Этап 2 - прилипание микроорганизмов к фагоцитам.

Этап 3 - поглощение микроорганизмов клеткой, образование фагосомы.

Этап 4-образование фаголизосомы, куда поступают ферменты и бактерицидные белки, гибель и переваривание возбудителя.

Процесс, который заканчивается гибелью фагоцитированных микробов, называется завершенным фагоцитозом.

Однако некоторые микроорганизмы, находясь внутри фагоцитов, не погибают, а иногда даже размножаются в них.

Это - гонококки, микобактерии туберкулеза, бруцеллы. Такое явление называют незавершенным фагоцитозом; при этом погибают фагоциты.

Как и другие физиологические функции, фагоцитоз зависит от состояния организма - регулирующей роли центральной нервной системы, питания, возраста.

Бактерицидные возможности фагоцитов определяют по числу лизосом, активности внутриклеточных ферментов и другими методами.

Активность фагоцитоза связана с наличием в сыворотке крови антител -опсонинов.

Эти антитела усиливают фагоцитоз, готовят поверхность клетки к поглощению ее фагоцитом.

Активность фагоцитоза в значительной степени определяет невосприимчивость организма к тому или иному возбудителю.

При одних заболеваниях фагоцитоз является основным фактором защиты, при других - вспомогательным. Однако во всех случаях отсутствие фагоцитарной способности клеток резко ухудшает течение и прогноз заболевания.

Гуморальные факторы неспецифической защиты

Помимо фагоцитов, в крови находятся растворимые неспецифические вещества, губительно действующие на микроорганизмы.

К ним относятся комплемент, пропердин, В – лизины, Х-лизины, эритрин, лейкины, плакины, лизоцим и др.

Антитела

Антитела – это специфические белки крови – иммуноглобулины, образующиеся в ответ на введение антигена и способные специфически реагировать с ним.

В сыворотке человека имеется два вида белков: альбумины и глобулины. Антитела связаны в основном с глобулинами, измененными под воздействием антигена и названными иммуноглобулинами (Ig).

Глобулины не однородны. По скорости движения в геле при пропускании через него электрического тока их делят на три фракции: α, β, γ. Антитела принадлежат главным образом к у-глобулинам. Эта фракция глобулинов имеет наибольшую скорость движения в электрическом поле.

Иммуноглобулины характеризуют по молекулярной массе, скорости движения в электрическом поле.

Иммуноглобулины характеризуют по молекулярной массе, скорости осаждения при ультрацентрифугировании (центрифугировании с очень большой скоростью) и т.

п. Различия этих свойств позволили разделить иммуноглобулины на 5 классов: IgG, IgM, IgA, IgE, IgD. Все они играют роль в развитии иммунитета против инфекционных заболеваний.

Иммуноглобулины G (IgG) составляют около 75% всех иммуноглобулинов человека. Они наиболее активны в развитии иммунитета. Единственные из иммуноглобулинов проникают через плаценту, обеспечивая пассивный иммунитет плода.

Имеют небольшую молекулярную массу и скорость осаждения при ультрацентрифугировании.

Иммуноглобулины М (IgM) образуются в организме плода и первыми появляются после заражения или иммунизации. К этому классу принадлежат «нормальные» антитела человека, которые образуются в течении его жизни, без видимого проявления инфекции или при бытовом многократном инфицировании. Имеют большую молекулярную массу и скорость осаждения при ультрацентрифугировании.

Иммуноглобулины А (IgА) обладают способностью проникать в секреты слизистых (молозиво, слюна, содержимое бронхов и др.).

они играют роль в защите слизистых оболочек дыхательного и пищеварительного трактов от микроорганизмов. По величине молекулярной массы и скорости осаждения при ультрацентрифугировании близки к IgG.

Иммуноглобулины D (IgD). Обнаружены в небольшом количестве в сыворотке крови.

Изучены недостаточно.

Структура иммуноглобулинов. Молекулы иммуноглобулинов всех классов построены одинаково. Наиболее простая структура у молекулы IgG: две пары полипептидных цепей, соединенных дисульфидной связью. Каждая пара состоит из легкой и тяжелой цепи, различающихся по молекулярной массе. Каждая цепь имеет постоянные участки, которые предопределены генетически, и переменные, образующиеся под воздействием антигена.

Это специфические участки антитела называют активными центрами. Они вступают во взаимодействие с антигеном, который вызвал образование антител. Количество активных центров в молекуле антитела определяет валентность – число молекул антигена, с которым может связаться антитело. IgG – двухвалентны, IgM — пятивалентны.

Иммуногенез – антителообразование зависит от дозы, кратности и способа введения антигена.

Учение о фагоцитозе

Различают две фазы первичного иммунного ответа на антиген: индуктивную – от момента введения антигена до появления антителообразующих клеток (до 20 ч) и продуктивную, которая начинается к концу первых суток после введения антигена и характеризуется появлением антител в сыворотке крови.

Количество антител постепенно увеличивается (к 4-му дню), достигая максимума на 7- 10-й день и уменьшается к концу первого месяца.

Вторичный иммунный ответ развивается при повторном введении антигена. При этом индуктивная фаза значительно короче - антитела вырабатываются быстрее и интенсивнее.

постепенно увеличивается (к 4-му дню), достигая максимума на 7- 10-й день и уменьшается к концу первого месяца.

Вторичный иммунный ответ развивается при повторном введении антигена.

При этом индуктивная фаза значительно короче - антитела вырабатываются быстрее и интенсивнее.

Антигены микроорганизмов

О – соматический антиген

Н – жгутиковый антиген

К – капсульный антиген

Контрольные вопросы для закрепления:

1.Иммунитет: виды и формы

2.Механизмы клеточного, гуморального иммунного ответов

3.Иммунодефицитные состояния.

4.Факторы неспецифической противомикробной защиты.

5.Специфические факторы защиты организма.

6.Понятие об антигенах

Добавить документ в свой блог или на сайт

медицина
d.120-bal.ru

Важнейшей функцией лейкоцитов в очаге воспаления является фагоцитоз — т.е. захват, убиение и переваривание бактерий, а так же переваривание продуктов распада тканей и клеток собственного организма.

В механизмах прилипания и последующего поглощения фагоцитом объекта большую роль играют опсонины — антитела и фрагменты комплемента, плазменные белки и лизоцим. Установлено, что определенные участки молекул опсонинов связываются с поверхностью атакуемой клетки, а другие участки той же молекулы — с мембраной фагоцита.

по-существу путем прогрессирующего прилипания поверхности фагоцита к поверхности микроба до тех пор, пока весь объект не будет "обклеен" мембраной фагоцита. В следствие этого поглощаемый объект оказывается внутри фагоцита, заключенным в мешок, образованный частью мембраны фагоцитирующей клетки.

Этот мешок называется фагосома. Образование фагосомы начинает стадию внутриклеточных превращений поглощенного объекта внутри фагосомы, т.е. вне внутренней среды фагоцита.

Основная часть внутриклеточных превращений поглощенного при фагоцитозе объекта связана с дегрануляцией — т.е.переходом содержимого цитоплазматических гранул фагоцитов внутрь фагосомы. В этих гранулах у всех облигатных фагоцитов содержится большое количество биологически активных веществ преимущественно ферментов, которые убивают и затем переваривают микробы и другие поглощенные объекты.

Вклад И. И. Мечникова в изучение иммунитета. Открытие фагоцитоза

Они синтезируют и секретируют нейтральные протеазы: эластазу, коллагеназу, активатор плазминогена, разрушающие внеклеточные коллагеновые и эластиновые волокна соединительной ткани. Макрофаги играют одну из ключевых ролей в заживлении ран. У животных в эксперименте, лишенных мононуклеаров, раны не заживают.

Это объясняется тем, что макрофаги синтезируют факторы роста для фибробластов и других мезенхимальных клеток, продуцируют факторы, увеличивающие синтез коллагена фибробластами, являются источниками факторов, управляющих различными этапами ангиогенеза — реваскуляризации поврежденной ткани, продуцируют полипептидные гормоны, являющиеся медиаторами "ответа острой фазы" — интерлейкин-1 и ИЛ-6 и фактор некроза опухолей.

Стадии развития фагоцитоза

Важнейшей функцией лейкоцитов в очаге воспаления является фагоцитоз — т.е.

захват, убиение и переваривание бактерий, а так же переваривание продуктов распада тканей и клеток собственного организма.

В ходе фагоцитоза различают 4 стадии:

1) стадия приближения фагоцита к объекту;

2) стадия прилипания фагоцита к объекту;

3) стадия поглощения фагоцитом объекта;

4) стадия внутриклеточных превращений поглощенного объекта.

Первая стадия объясняется способностью фагоцитов к хемотаксису.

В механизмах прилипания и последующего поглощения фагоцитом объекта большую роль играют опсонины — антитела и фрагменты комплемента, плазменные белки и лизоцим.

Установлено, что определенные участки молекул опсонинов связываются с поверхностью атакуемой клетки, а другие участки той же молекулы — с мембраной фагоцита.

Механизм поглощения не отличается от прилипания — захват осуществляется путем постепенного обволакивания фагоцитом микробной клетки, т.е.

по-существу путем прогрессирующего прилипания поверхности фагоцита к поверхности микроба до тех пор, пока весь объект не будет "обклеен" мембраной фагоцита.

В следствие этого поглощаемый объект оказывается внутри фагоцита, заключенным в мешок, образованный частью мембраны фагоцитирующей клетки. Этот мешок называется фагосома. Образование фагосомы начинает стадию внутриклеточных превращений поглощенного объекта внутри фагосомы, т.е. вне внутренней среды фагоцита.

Основная часть внутриклеточных превращений поглощенного при фагоцитозе объекта связана с дегрануляцией — т.е.переходом содержимого цитоплазматических гранул фагоцитов внутрь фагосомы.

В этих гранулах у всех облигатных фагоцитов содержится большое количество биологически активных веществ преимущественно ферментов, которые убивают и затем переваривают микробы и другие поглощенные объекты.

В нейтрофилах имеется 2-3 вида гранул, которые содержат лизоцим — растворяющий микробную стенку, лактоферрин — белок, связывающий железо и тем самым оказывающий бактериостатические действие, миелопероксидазу, нейтральные протеазы, кислые гидролазы, белок, связывающий витамин В12 и другие. Как только образуется фагосома, к ней вплотную подходят гранулы. Мембраны гранул сливаются с мембраной фагосомы и содержимое гранул поступает внутрь фагосомы.

Как уже говорили, нейтрофилы — первые лейкоциты, инфильтрирующие зону воспаления.

Они обеспечивают эффективную защиту от бактериальных и грибковых инфекций. Если же рана не инфицирована, то содержание нейтрофилов в ней быстро снижается и через 2 суток в очаге воспаления преобладают макрофаги.

Как и нейтрофилы, воспалительные макрофаги — это подвижные клетки, защищающие организм с помощью фагоцитоза от различных инфекционных агентов. Они также способны секретировать лизосомальные ферменты и кислородные радикалы, но отличаются от нейтрофилов рядом качеств, которые делают эти клетки особенно важными на более поздних этапах острого воспаления и в механизмах заживления ран:

Макрофаги живут гораздо дольше (месяцы, а нейтрофилы — неделю).

2. Макрофаги способны распознавать, а затем поглощать и разрушать поврежденные и нежизнеспособные клетки собственного организма, в том числе и нейтрофилы. С этим связана их чрезвычайная роль в "уборке" воспалительного экссудата. Макрофаги это главные клетки, участвующие в растворении и удалении из очага воспаления поврежденной соединительной ткани, что необходимо для последующей реконструкции тканей.

Они синтезируют и секретируют нейтральные протеазы: эластазу, коллагеназу, активатор плазминогена, разрушающие внеклеточные коллагеновые и эластиновые волокна соединительной ткани.

Макрофаги играют одну из ключевых ролей в заживлении ран. У животных в эксперименте, лишенных мононуклеаров, раны не заживают. Это объясняется тем, что макрофаги синтезируют факторы роста для фибробластов и других мезенхимальных клеток, продуцируют факторы, увеличивающие синтез коллагена фибробластами, являются источниками факторов, управляющих различными этапами ангиогенеза — реваскуляризации поврежденной ткани, продуцируют полипептидные гормоны, являющиеся медиаторами "ответа острой фазы" — интерлейкин-1 и ИЛ-6 и фактор некроза опухолей.

Иммунологическая реактивность

Выражение «иммунологическая реактивность» происходит от слова «иммунитет», которое пришло в медицину из древних юридических наук. В Древнем Риме «иммунный» означало «освобожденный от оплаты податей». Иммунными стали также называть людей, переболевших той или иной заразной болезнью и не восприимчивых к повторному заболеванию. Их использовали на эпидемиях чумы, холеры и других болезней для ухода за больными и уборки трупов.

Иммунологическая реактивность является важнейшим выражением реактивности вообще. Это понятие объединяет ряд взаимосвязанных явлений.

Невосприимчивость человека и животных к заразным (инфекционным) болезням, или иммунитет в собственном смысле слова.

Реакции биологической несовместимости тканей:

Реакции повышенной чувствительности (анафилаксия и аллергия).

Явления привыкания к ядам различного происхождения.

Объединяют все эти на первый взгляд разнородные явления друг с другом следующие признаки.

Все указанные явления и реакции возникают в организме при попадании в него «чужеродных» живых существ (микробов, вирусов), нормальных или болезненно измененных тканей, более и менее денатурированных белков, различных антигенов, токсинов, алкалоидов и пр. Особое место занимают реакции между эмбриональными тканями, чужеродность которых друг для друга определяется стадией развития эмбриона.

Эти явления и реакции в широком понимании являются реакциями биологической защиты, направленной на сохранение и поддержание постоянства, устойчивости, состава и свойств каждого отдельного целостного организма животного. Даже тяжелые реакции повышенной чувствительности в виде анафилактического шока сопровождаются разрушением и очищением организма от вызвавшего шок агента. Местные реакции повышенной чувствительности всегда сопровождаются фиксацией болезнетворного агента в месте реакции, что защищает организм от попадания данного агента в кровь.

Учение И. И. Мечникова о фагоцитозе. Фагоцитозом (от греч. phago - пожираю и cytos - клетка) называется процесс поглощения и переваривания микробов и животных клеток различными соединительнотканными клетками - фагоцитами. Учение о фагоцитозе создал великий русский ученый - эмбриолог, зоолог и патолог И. И. Мечников, которого следует считать основоположником учения не только о фагоцитозе, но и об иммунитете.

Впервые И. И. Мечников подошел к вопросу о фагоцитозе на основании наблюдений над поглощением клетками эндо- и мезодермы низших беспозвоночных животных (губок, кишечнополостных, бескишечных турбеллярий) частичек пищи и микробов. В фагоцитозе он видел основу воспалительной реакции, выражающей защитные свойства организма.

Защитную деятельность фагоцитов при инфекции И. И. Мечников впервые показал на примере инфекции дафнии дрожжевым грибком. В дальнейшем И. И. Мечниковым было убедительно показано значение фагоцитоза как основного механизма иммунитета при различных инфекциях человека и животного. Для человека правильность своей теории И. И. Мечников доказал при изучении фагоцитоза стрептококков при роже. В дальнейшем фагоцитарный механизм иммунитета был установлен для туберкулеза, возвратного тифа и многих других инфекций.