Биогеохимический цикл азота в природе. Биогеохимические круговороты. Самый интенсивный биогеохимический цикл – круговорот углерода. Биогеохимический цикл кремния

Биогеохимический цикл азота

Азот и его соединения играют в жизни биосферы такую же важную и незаменимую роль, как и углерод. Биофильность азота сравнима с биофильностью углерода. Индекс биогенного обогащения почв по отношению к земной коре, а растений по отношению к почвам составляет для азота 1000 и 10000 соответственно (Ковда, 1985).

Основным резервуаром азота в биосфере также является воздушная оболочка. Около 80% всех запасов азота сосредоточено в атмосфере планеты, что связано с направлением биогеохимических потоков соединений азота, образующихся при денитрификации. Основной формой, в которой содержится азот в атмосфере, является молекулярная – N 2 . В качестве несущественной примеси в атмосфере содержатся различные оксидные соединения азота NO x , а также аммиак NH 3 . Последний в условиях земной атмосферы наиболее неустойчив и легко окисляется. В то же время, величина окислительно-восстановительного потенциала в атмосфере недостаточна и для устойчивого существования оксидных форм азота, потому его свободная молекулярная форма и является основной.

Первичный азот в атмосфере, вероятно, появился в результате процессов дегазации верхней мантии и из вулканических выделений. Фотохимические реакции в высоких слоях атмосферы приводят к образованию соединений азота и заметному поступлению их на сушу и в океан с атмосферными осадками (3-8 кг/га аммонийного азота в год и 1,5-6 кг/га нитратного). Этот азот также включается в общий биогеохимический поток растворенных соединений, мигрирующих с водными массами, участвует в почвообразовательных процессах и в формировании биомассы растений.

В отличие от углерода, атмосферный азот в силу устойчивости молекулы не может напрямую использоваться высшими растениями. Поэтому ключевую роль в биологическом круговороте азота играют организмы-фиксаторы. Это микроорганизмы нескольких различных групп, обладающие способностью путём прямой фиксации непосредственно извлекать азот из атмосферы и, в конечном счёте, связывать его в почве. К ним относятся:

    некоторые свободноживущие почвенные бактерии;

    симбионтные клубеньковые бактерии (существующие в симбиозе с бобовыми);

    цианобионты, которые также бывают симбионтами грибов, мхов, папоротников, а иногда и высших растений.

В результате деятельности организмов – фиксаторов азота он связывается в почвах в нитритной форме (соединения на основе NH 3).

Нитритные соединения азота способны мигрировать в водных растворах. При этом они окисляются и преобразуются в нитратные – соли азотной кислоты HNO 3 . В этой форме азотные соединения способны эффективно усваиваться высшими растениями и использоваться для синтеза белковых молекул на основе пептидных связей C-N. Далее, по трофическим цепям, азот попадает в организмы животных. В окружающую среду (в водные растворы и в почву) он возвращается в процессах выделительной деятельности животных или разложения органического вещества.

Возврат свободного азота в атмосферу, как и его извлечение, осуществляется в результате микробиологических процессов. Это звено круговорота функционирует благодаря деятельности почвенных бактерий-денитрификаторов, вновь переводящих азот в молекулярную форму.

В литосфере, в составе осадочных отложений, связывается весьма небольшая часть азота. Причина этого в том, что минеральные соединения азота, в отличие от карбонатов, очень хорошо растворимы. Выпадение некоторой доли азота из биологического круговорота также компенсируется вулканическими процессами. Благодаря вулканической деятельности в атмосферу поступают различные газообразные соединения азота, который в условиях географической оболочки Земли неизбежно переходит в свободную молекулярную форму.

Таким образом, основными специфическими чертами круговорота азота в биосфере можно считать следующие:

    преимущественную концентрацию в атмосфере, играющей исключительную роль резервуара, из которой живые организмы черпают запасы необходимого им азота;

    ведущую роль в круговороте азота почв и, в особенности, почвенных микроорганизмов, деятельность которых обеспечивает переход азота в биосфере из одних форм в другие (рис. 3.5.3).

Рис. 3.5.3. Схема биогеохимического цикла азота

Поэтому огромное количество азота в связанном виде содержит биосфера: в органическом веществе почвенного покрова (1,5х10 11 т), в биомассе растений (1,1х10 9 т), в биомассе животных (6,1х10 7 т). В больших количествах азот содержится и в некоторых биогенных ископаемых (селитры).

В то же время наблюдается парадокс – при огромном содержании азота в атмосфере вследствие чрезвычайно высокой растворимости солей азотной кислоты и солей аммония, азота в почве мало и почти всегда недостаточно для питания растений. Поэтому потребность культурных растений в азотных удобрениях всегда высока. Поэтому ежегодно в почву вносится по разным оценкам от 30 до 35 млн. тонн азота в виде минеральных удобрений. Таким образом, поступление за счет азотных удобрений составляет 30% от общих поступлений азота на сушу и в океан. Это часто приводит к существенному загрязнению окружающей среды и тяжелым заболеваниям человека и животных. Особенно велики потери нитратных форм азота, так как он не сорбируется почвой, легко вымывается природными водами, восстанавливается в газообразные формы и до 20-40% его теряется для питания растений. Существенным нарушением цикла азота является и все возрастающее количество отходов животноводства, промышленных отходов и стоков больших городов, поступление в атмосферу аммония и оксидов азота при сжигании угля, нефти, мазута и т.д. Опасно проникновение оксидов азота в стратосферу (выхлопы сверхзвуковых самолетов, ракет, ядерные взрывы), так как это может быть причиной разрушения озонового слоя. Все это, естественно, сказывается на биогеохимическом цикле азота.

Сера

Сера также является одним из элементов, играющих чрезвычайно важную роль в круговороте веществ биосферы. Она относится к числу химических элементов, наиболее необходимых для живых организмов. В частности, она является компонентом аминокислот. Она предопределяет важные биохимические процессы живой клетки, является незаменимым компонентом питания растений и микрофлоры. Соединения серы участвуют в формировании химического состава почв, в значительных количествах присутствуют в подземных водах, что играет решающую роль в процессах засоления почв.

Содержание серы в земной коре составляет 4,7х10-2%, в почве – 8,5х10-2%, в океане – 8,8х10-2% (Виноградов, 1962). Однако, в засоленных почвах содержание серы может достигать значений, измеряемых целыми процентами. Таким образом, основным резервуаром, из которого она черпается живыми организмами, является литосфера. Это обусловлено тем, что устойчивое существование сернистых соединений в условиях современной атмосферы Земли, содержащей свободный кислород и пары Н 2 О, невозможно. Сероводород (H 2 S) в кислородной среде окисляется, а кислородные соединения серы, реагируя с Н 2 О, образуют серную кислоту H 2 SO 4 , которая выпадает на поверхность Земли в составе кислотных дождей. Поэтому оксиды серы SO х, хотя и могут усваиваться растениями непосредственно из атмосферы, существенной роли в круговороте серы этот процесс не играет.

Сера имеет несколько изотопов, из которых в природных соединениях наиболее распространены S 32 (>95%) и S 34 (4,18%). В результате биологических и биогеохимических процессов происходит изменение в соотношении этих изотопов в сторону увеличения содержаний более легкого изотопа в верхних гумусовых горизонтах почв.

Изотопный состав серы подземных, почвенно-грунтовых вод и водорастворимых сульфатов из горизонта С сульфатно-содовых солончаков является сходным.

В составе земной коры соединения серы существуют, в основном, в двух минеральных формах: сульфидной (соли сероводородной кислоты) и сульфатной (соли серной кислоты). Редко встречается самородная сера, которая неустойчива и склонна, в зависимости, от значений окислительно-восстановительного потенциала среды, формировать или кислородные, или водородные соединения.

Первичной, глубинной по происхождению, минеральной формой нахождения серы в земной коре, является сульфидная. Сульфидные соединения в условиях биосферы практически нерастворимы, и потому сульфидная сера растениями не усваивается. Но, в то же время, сульфиды в кислородной среде неустойчивы. Поэтому сульфиды на земной поверхности, как правило, окисляются, и в результате этого сера входит в состав сульфатных соединений. Сульфатные соли обладают достаточно хорошей растворимостью, и сера в географической оболочке активно мигрирует в водных растворах в составе сульфат-иона SO 4 2- .

Именно в этой, сульфатной форме сера, в составе водных растворов, эффективно усваивается растениями, а далее – животными организмами. Усвоению способствует то, что сульфатные соединения серы способны накапливаться в почвах, участвуя в процессах обменной сорбции и входя при этом в состав почвенного поглощающего комплекса (ППК).

Разложение органического вещества в кислородной среде приводит к возвращению серы в почву и природные воды. Сульфатная сера мигрирует в водных растворах, и может снова использоваться растениями. Если же разложение идёт в бескислородной среде, ведущую роль играет деятельность серобактерий, которые восстанавливают SO 4 2- до H 2 S. Сероводород выделяется в атмосферу, где окисляется и возвращается в другие компоненты биосферы в сульфатной форме. Часть серы в восстановительной обстановке может связываться в сульфидных соединениях, которые, при возобновлении доступа кислорода, снова окисляются и переходят в сульфатную форму.

Биогеохимический цикл серы состоит из 4 стадий (рис. 3.5.4):

    усвоение соединений серы живыми организмами (растениями и бактериями) и включение серы в состав белков и аминокислот.

    Превращение органической серы живыми организмами (животными и бактериями) в конечный продукт – сероводород.

    Окисление минеральной серы живыми организмами (серобактериями, тионовыми бактериями) в процессе сульфатредукции. На этой стадии происходит окисление сероводорода, элементарной серы, ее тио- и тетрасоединений.

    Восстановление минеральной серы живыми организмами (бактериями) в процессе десульфофикации до сероводорода. Таким образом, важнейшим звеном всего биогеохимического цикла серы в биосфере является биогенное образование сероводорода.

Рис. 3.5.4. Схема биогеохимического цикла серы

Изъятие серы из биосферного круговорота происходит в результате накопления сульфатных отложений (в основном гипсовых), слои и линзы которых становятся компонентами литосферы. Компенсируются потери во-первых, в процессах вулканизма (поступление H 2 S и SO x в атмосферу, а оттуда, с атмосферными осадками – на поверхность Земли). А во-вторых, в результате деятельности термальных вод, с которыми в верхние горизонты земной коры и на дно Мирового океана поступают сульфидные соединения.

Таким образом, к характерным особенностям круговорота серы можно отнести второстепенную роль процессов атмосферной миграции, а также многообразие форм нахождения, обусловленное переходом её из сульфидных форм в сульфатные и обратно, в зависимости от изменения окислительно-восстановительных условий.

Промышленные процессы выносят в атмосферу большое количество серы. В отдельных случаях значительная концентрация соединений серы в воздухе служит причиной нарушений в окружающей среде, в том числе, кислотных дождей. Присутствие в воздухе двуокиси серы негативно влияет как на высшие растения, так и на лишайники, причем эпифитные лишайники могут служить индикаторами повышенных содержаний серы в воздухе. Лишайники поглощают влагу из атмосферы всем слоевищем, поэтому концентрация серы в них быстро достигает предельно допустимого уровня, что ведет к гибели организмов.

Поступление серы в общий круговорот по данным Дж. П. Френда (1976) следующее:

При дегазации земной коры – 12х10 12 г/год; при выветривании осадочных пород – 42х10 12 г/год,; антропогенные поступления в виде сернистого газа – 65х1012 г/год, что в сумме составляет 119х10 12 г/год. Значительные количества серы ежегодно консервируются в виде сульфидов и сульфатов – 100х10 12 г/год и, таким образом., временно выводятся из общего биогеохимического круговорота.

Таким образом, антропогенное поступление серы в биосферу существенно изменяет круговорот этого элемента, а приход серы в биосферу превышает ее расход, в результате чего, должно происходить постепенное ее накопление.

Фосфор

Круговорот фосфора в природе сильно отличается от биогеохимических циклов углерода, кислорода, азота и серы, так как газовая форма соединений фосфора (например РН 3) практически не участвует в биогеохимическом цикле фосфора. То есть фосфор к накоплению в атмосфере вообще не способен. Поэтому роль «резервуара» фосфора, из которого этот элемент извлекается и используется в биологическом круговороте, так же как и для серы, играет литосфера.

Фосфор в литосфере содержится в форме фосфатных соединений (солей фосфорной кислоты). Основная доля среди них приходится на фосфат кальция – апатит. Это полигенный минерал, образующийся в различных природных процессах – как в глубинных, так и в гипергенных (в том числе и биогенных). Фосфатные соединения способны растворяться в воде, и фосфор в составе иона РО 4 3- может мигрировать в водных растворах. Из них фосфор и усваивается растениями.

Индекс биогенного обогащения почв по отношению к земной коре, а растений по отношению к почвам составляет для фосфора, так же, как и для азота 1000 и 10000 соответственно (Ковда, 1985). Для растений наиболее доступным является фосфор неспецифических органических соединений и гумуса и именно он играет главную роль в малом (локальном) биологическом цикле фосфора.

Животные являются еще большими концентраторами фосфора, чем растения. Многие из них накапливают фосфор в составе тканей мозга, скелета, панцирей..Есть несколько способов усвоения фосфора организмами-консументами. Во-первых, прямое усвоение из растений в процессе питания. Во-вторых, водные организмы-фильтраторы извлекают фосфор из органических взвесей. В-третьих, органические соединения фосфора усваиваются организмами-илоедами при переработке ими биогенных илов.

Возврат фосфора в окружающую среду происходит при разложении органического вещества. Но возврат этот оказывается далеко не полным. В целом для соединений фосфора характерна тенденция выноса в форме водных растворов и взвесей в конечные водоёмы стока, в наибольшей мере – в Мировой Океан, где он и накапливается в составе осадочных отложений различного генезиса. Вновь вернуться в экзогенный круговорот эта часть фосфора может только в результате тектонических процессов, растягивающихся на сотни миллионов лет. В естественных условиях сохранение баланса обеспечивается сравнительно слабой подвижностью соединений фосфора, в результате которой фосфор, извлечённый растениями из почвы, большей частью возвращается в неё в результате разложения органического вещества. В почвах и породах фосфор достаточно легко фиксируется. Фиксаторами фосфора являются гидроксиды железа, марганца, алюминия, глинистые минералы (особенно, минералы группы каолинита). Однако, фиксированный фосфор может быть на 40-50% десорбирован и использован растениями. Этот процесс зависит от рН и Eh условий среды. Повышенная кислотность, образование угольной кислоты, способствуют десорбции фосфора, усилению миграции фосфорных соединений.

В восстановительной среде образуются соединения фосфора с двухвалентным железом, что тоже способствует выносу фосфора из почвы.

Миграция фосфора возможна и за счет водной и ветровой эрозии. Поэтому биогеохимический цикл фосфора значительно менее замкнут и менее обратим, чем циклы углерода и азота, а загрязнение фосфором окружающей среды особенно опасно (рис. 3.5.5).

Рис. 3.5.5. Схема биогеохимического цикла фосфора

Основными особенностями круговорота фосфора, таким образом, являются:

    отсутствие атмосферного переноса;

    наличие единственного источника – литосферы;

    тенденция к накоплению в конечных водоёмах стока.

При интенсивной сельскохозяйственной эксплуатации земель потери фосфора в ландшафте становятся практически необратимыми. Компенсация возможна только за счёт применения фосфорных удобрений. Известно, что фосфорные удобрения являются важным и необходимым звеном в получении высоких урожаев сельскохозяйственных культур. Однако, все известные запасы месторождений фосфатов ограничены и по предсказаниям ученых могут истощиться уже в ближайшие 75-100 лет. В то же время, вредные соединения фосфатов в последнее время становятся одним из важнейших факторов загрязнения речных и озерных вод.

Таким образом, в последе время общая картина распределения им миграции фосфора в биосфере резко нарушена человеком. Вот слагаемые этого явления: во-первых, мобилизация фосфора из агроруд и шлаков, производство и применение фосфорных удобрений, во-вторых производство фосфорсодержащих препаратов и их использование в быту; в-третьих – производство фосфорсодержащих ресурсов продовольствия и кормов, вывоз и потребление их в зонах концентрации населения; в-четвертых – развитие рыбного промысла, добыча морских моллюсков и водорослей, что влечет за собой перераспределение фосфора из океана на сушу. В итоге наблюдается процесс фосфатизации суши, но процесс этот проявляется крайне неравномерно. Увеличивается содержание фосфора в окружающей среде больших городов. Напротив, страны, активно экспортирующие органические продукты и не применяющие фосфорных удобрений, теряют запасы фосфора в своих почвах.

Биогеохимические циклы калия и натрия

Кларк калия в земной коре составляет 2,89, а натрия 2, 46, т.е их относительные содержания очень близки.

Калий состоит из смеси 3-х изотопов: 39 К – 93,08%; 40 К -0,0119%; 41 К – 6,91%. Изотоп 40К неустойчив и превращается в соседние изобары кальция и аргона.

Превращение калия в аргон явилось основой для разработки калий-аргонового метода ядерной геохронологии.

Космическая распространенность калия, как элемента нечетного, невелика по сравнению с четными кальцием и кислородом. По размерам ион калия наиболее крупный среди других ведущих катионов литосферы. Поэтому объемный кларк калия занимает второе место после кислорода в земной коре.

Калий – химически активный металл, в самородном состоянии не встречается. Во всех химических соединениях на Земле выступает как одновалентный металл. Металлический калий на воздухе «сгорает», быстро окисляясь до К 2 О. Число минеральных видов – 115 (втрое меньше, чем у кальция и вдвое меньше, чем у натрия).. Важнейшие минералы: галоиды – сильвин, карналлит, нитраты – К-селитра, силикаты – К-полевые шпаты (ортоклаз, микроклин), флогопит, мусковит, биотит, глауконит, лейцит. По химическим свойствам калий близок к натрию, что определяет их совместную миграцию. Но их поведение в зоне гипергенеза и биосфере в целом резко различно. Большая часть калия в ходе гипергенного преобразования силикатов остается в составе вторичных глинистых минералов, поэтому калий гораздо прочнее удерживается в пределах Мировой суши, чем натрий и,как мы увидим далее, кальций. И все же частичное высвобождение ионов калия в процессах гипергенеза происходит и он активно вовлекается в биогеохимический круговорот.

Обусловлено это тем, что калий играет очень важную роль в жизни живых организмов. В условиях влажного климата при выветривании калийсодержащих минералов калий легко выщелачивается и переносится водными растворами. Однако вынос калия в коре выветривания происходит менее интенсивно, чем кальция и натрия. Это связано с тем, что крупный ион калия в большей степени сорбируется тонкодисперсными минералами. Давно известно, что ионы калия легче сорбируются и некоторыми коллоидами (например, гидроокислами железа и алюминия), чем ионы натрия. Реакции катионного обмена с глинистыми минералами также способствуют фиксации калия. В почвах также происходит обмен между ионами калия и гидроксония, которые имеют сопоставимые ионные размеры. Таким способом калий может фиксироваться в гидрослюдах, каолините, монтмориллоните. Калий в большей степени, чем натрий, поглощается наземной растительностью.

Поэтому значительная часть калия сохраняется в почвах, в то время как большая часть натрия выносится в океан. В составе стока с материков натрия почти в 2,5 раза больше, чем калия.

Калий – важнейший элемент живых организмов. Они содержат от 0,1 до 0,01% калия. В золе культурных растений до 25-60% К 2 О. Некоторые организмы способны концентрировать калий в значительных количествах. Так, в некоторых водорослях содержание калия достигает 3% живой массы. Наземные растения поглощают калий из почвы. При недостатке калия листья бледнеют и отмирают, семена теряют всхожесть. Калий легко проникает в клетки организмов и увеличивает их проницаемость для различных веществ. Он оказывает значительное влияние на обмен веществ и необходим растениям для фотосинтеза. Кроме того, калий улучшает поступление воды в клетки растений и понижает процесс испарения, тем самым увеличивая устойчивость растений к засухе. При недостатке или избытке калия интенсивность фотосинтеза снижается, а интенсивность дыхания повышается. Недостаток калия в почвах приводит к значительному снижению урожайности растений.

Именно поэтому кларк калия в живом веществе такой же высокий, как у азота. Особенно много калия накапливают некоторые морские водоросли (до 5%).

В биологический круговорот на суше вовлекается ежегодно около 1,8х109 тонн калия (Добровольский, 1998). Освобождающаяся из системы биологического круговорота на суше масса калия частично задерживается в мертвом органическом веществе и сорбируется минеральным веществом почвы (глинистыми минералами), а частично вовлекается в водную миграцию.

Количество калия в настоящее время связанное в мертвом органическом веществе педосферы составляет по данным разных авторов от 3х109 до 6х109 тонн. Ежегодно с континетальным водным стоком в океан поступает более 61х106 тонн калия в растворенном состоянии (виде свободных ионов) и 283х106 тонн калия в составе взвесей (глинистые частицы, органическое вещество и т.д.). Калий активно мигрирует также в системе поверхность океана-атмосфера в составе аэрозолей: средняя концентрация этого элемента в атмосферных осадках над океаном - 15%. Концентрация калия в атмосферных осадках над континентами заметно выше, в среднем 0,7%. Значительное количество калия переносится с пылью с суши в океан. По оценке В.В. Добровольского эта величина составляет не менее 43х10 6 тонн в год.

В гипергенной зоне крупные концентрации калия встречаются редко и представлены эвапоритами – сильвином и карналлитом. Еще реже встречаются нитраты калия в виде калиевой селитры органогенного происхождения (образуется в условиях аридного климата).

Кларк натрия в живом веществе очень низок – 0,008 (более чем на два порядка ниже, чем у калия), что свидетельствует о низком потреблении натрия живым веществом. Однако, в малых количествах натрий необходим всем живым организмам.

В условиях влажного климата натрий легко выходит из биологического круговорота и выносится с жидким стоком за пределы ландшафта. В результате наблюдается общее обеднение последнего натрием. Содержание натрия в растительных организмах обычно очень низкое. Животные организмы нуждаются в повышенных количествах этого элемента., так как он входит в состав крови. Влияет на деятельность сердечно-сосудистой системы и почек. Поэтому животные иногда нуждаются в подкормке поваренной солью.

В сухом климате натрий концентрируется в грунтовых и озерных водах и накапливается в солончаковых почвах (действие испарительного барьера). Соответственно, и растительность галофитных сообществ содержит повышенные количества натрия.

Тем не менее, роль биологического круговорота натрия, в отличие от калия, сравнительно невелика. Зато очень значительна его водная миграция. По особенностям миграции в биосфере натрий весьма схож с хлором. Он образует легко растворимые соли, поэтому накапливается в Мировом океане, участвует в атмосферной миграции.

Основной источник подвижного натрия в биосфере – выветривающиеся изверженные породы (основной источник хлора – вулканизм).

Техногенез внес существенные коррективы в биогеохимические пути миграции натрия. Основное значение имеет добыча галита (поваренной соли), соды и мирабилита. На характер биогеохимических циклов натрия существенное влияние оказывает и орошение земель в засушливых районах.

Биогеохимические циклы кальция и магния

Атомы кальция содержат магическое число протонов: 20 в ядре и это определяет прочность его ядерной системы. Среди легких элементов кальций представлен максимальным числом стабильных изотопов – 6, имеющих распространение: 40 Са – 96,97% (дважды магический Z=N=20) 42 Са – 0,64, 43 Са – 0,145, 44 Са – 2,06, 46 Са-0,0033, 48 Са -0,185%. По распространению в Солнечной системе он занимает 15 место, но среди металлов находится на 5 месте.

В природе он ведет себя как химически активный металл. Легко окисляется с образованием СаО. В геохимических процессах выступает как двухзарядный катион Са+2

Его ионный радиус очень близок к радиусу натрия. Число минеральных видов – 390, поэтому он относится к главным минералообразующим элементам. По числу образуемых минералов он занимает 4 место после кислорода, водорода и кремния. Например: карбонаты – кальцит, арагонит, доломит; сульфаты – ангидрит, гипс; галоиды- флюорит; фосфаты: апатит; силикаты – гранаты, пироксены, амфиболы, эпидот, плагиоклазы, цеолиты.

Плагиоклазы – наиболее распространенные минералы земной коры. Кларк кальция в литосфере составляет 2,96. Кальциевые силикаты слабо устойчивы в зоне гипергенеза и при выветривании горных пород разрушаются в первую очередь.

Кальций обладает относительно высокой миграционной способностью, во многом определяемой особенностями климата. В процессах химического выветривания кальций выщелачивается из минералов природными водами. По отношению к выветриванию кальциевые минералы образуют следующую последовательность: плагиоклаз – кальциевый авгит- кальциевый амфибол. В группе плагиоклазов богатые кальцием разности выветриваются скорее, чем натриевые. При этом природные растворы, энергично удаляющие кальций, содержат значительные количества гидрокарбонатного иона. Зато в почвах гумидных зон наблюдается значительный дефицит кальция. Очень мало его и в корах выветривания. Объясняется это высокой миграционной подвижностью данного элемента.

В ионном стоке с материков кальций занимает первое место среди катионов. Реками он выносится главным образом в виде взвесей карбонатов, сульфатов и бикарбоната в растворенном состоянии. Геохимическая история кальция в океане связана с карбонатной системой равновесия, температурой воды и деятельностью живых организмов.

Кальций – один из важнейших элементов живых организмов – от простейших до высших млекопитающих. Холодные воды высоких широт и морские глубины недосыщены СаСО 3 из-за низких температур и рН, поэтому содержащаяся в воде угольная кислота растворяет СаСО 3 донных отложений. Именно поэтому морские организмы в высоких широтах избегают строить свои скелеты из СаСО 3 . В экваториальных широтах установлена область пересыщения СаСО 3 . Здесь наблюдается массовый рост коралловых рифов, у многих живущих здесь организмов массивные карбонатные скелеты и раковины.

Миграция кальция в океане с участием живых организмов – наиболее важное звено в его круговороте. По А.П. Виноградову реки ежегодно приносят в океан и1*10 15 т СаСО 3 . Куда же он делся?. Примерно столько же его ежегодно захороняется в донных отложениях океана. Живые организмы океана концентрируют кальций в виде арагонита и кальцита. Арагонит, однако, неустойчив и со временем переходит в кальцит. В океане мы сталкиваемся с уникальными явлениями быстрого роста крупных кристаллов в отдельных организмах. В некоторых раковинах двустворчатых моллюсков встречаются кристаллы кальцита длиной более 7 см, в тропических морях обитают морские ежи, имеющие длинные иголки из кальцита. У многих иглокожих наблюдается адаптация живого тела организмов к форме кристаллов. В этом случае мы встречаем особый вид симбиоза между организмами и кристаллами.

В аридном климате кальций легко выпадает из растворов в виде карбонатов, формируя толщи хемогенных карбонатных пород и иллювиально-карбонатные горизонты в почвах.

Небольшая часть ионов кальция морской воды осаждается в замкнутых водоемах в эвапоритовых условиях химическим путем.

Кальций играет важную роль в процессах почвообразования. Он входит в состав почвенно-поглощающего комплекса, участвует в обменных реакциях почвенного раствора, обусловливая буферную способность почв в кислом интервале среды. Гуматы кальция играют важную роль в формировании структуры почвы. Кроме того, кальций активно участвует в процессах осаждения полуторных окислов, марганца, нередко образуя конкреции совместно с этими элементами и кремнеземом.

В почвах кислого ряда, характеризующихся значительным проявлением процесса выщелачивания, наблюдается явление биогенного накопления кальция в подстилке и аккумулятивных поверхностных горизонтах почв. Он входит в группу элементов-биофилов. Поэтому кальций активно участвует в биологическом круговороте. Масштабы вовлечения кальция значительно различаются в разных природных зонах.

В агроландшафтах значительная часть кальция отчуждается вместе с урожаем.

Но нарушение биогеохимического круговорота кальция в настоящее время происходит не только и не столько за счет отчуждения части его с сельскохозяйственной продукцией, но и за счет использования карбонатных пород в строительстве, сельском хозяйстве (известкование почв), металлургической промышленности.

Кларк магния уступает кларку кальция и составляет 1,87, но распределение магния очень неоднородно. По размеру ион магния близок к ионам двухвалентного железа и никеля и совместно с ними входит в состав оливинов и пироксенов, концентрируясь в основных и особенно ультраосновных магматических горных породах.

В то же время, магний накапливается в океане и соляных озерах и по миграционной способности приближается к таким элементам как натрий и калий. Обусловлено это хорошей растворимостью хлоридов и сульфатов магния. В отличие от других щелочноземельных и щелочных металлов магний, благодаря малому размеру ионов, легко входит в кристаллическую решетку глинистых минералов, образуя вторичные магнезиальные алюмосиликаты.

Магний – биофильный элемент. Он входит в состав хлорофилла, который при недостатке этого элемента разрушается. Растение реагирует на недостаток магния в почве оттоком хлорофилла из старых листьев к молодым. Передвижение идет по жилкам листа. Поэтому они долгое время остаются зелеными, в то время как межпрожилковые участки листа желтеют. Известны и болезни животных, связанные с недостатком магния. Тем не менее, биофильность магния меньше, чем у кальция и калия.

В гумидных ландшафтах магний, как и кальций выщелачивается из почв, хотя его подвижность ниже.. Связано это с действием нескольких геохимических барьеров. Во-первых, магний активно поглощается живым веществом; во- вторых – он, так же как и калий входит в кристаллические решетки вторичных силикатов и, наконец, сорбируется глинистыми коллоидами и гумусом. Все же значительная часть магния выносится с жидким стоком и в составе грунтовых и речных вод магний находится на втором месте после кальция.

В аридных условиях на распределение магния влияет высокая растворимость его хлоридов и сульфатов. В результате наблюдается накопление этих солей на испарительных барьерах и формирование солончаков.

В океан магний попадает из выветривающихся горных пород и масштабы этого поступления значительны (особенно в прошлом). По подсчетам В.М. Гольдшмидта за время геологической истории с материков в океан поступило 12,6 г магния на каждый килограмм океанической воды. Однако, содержание магния в воде современных океанов составляет всего 1,3 г. Это обусловлено многократным участием каждого атома магния в большом геологическом круговороте, отложением доломитов и других содержащих магний осадочных пород.

Миграция магния на протяжении геологической истории существенно менялась. Если в докембрийских известняках содержится до 12,6% магния, то в современных – только 1%. Образование доломитов в открытых морях прекратилось еще в конце палеозоя. В настоящее время доломиты осаждаются только в некоторых лагунах и в озере Балхаш (Казахстан).

Технофильность магния пока значительно ниже, чем у кальция и натрия. До начала ХХ века использовались только доломит и магнезит. Только в последнее время стали широко использовать сплавы, содержащие магний. В обедненных магнием ландшафтах наблюдается незначительное его накопление за счет внесения магнийсодержащих удобрений и известкования почв с применением доломита.

Таким образом, в целом для биогеохимических циклов всех щелочных и щелочноземельных металлов характерна незамкнутость глобальных годовых циклов. В результате наблюдается интенсивная аккумуляция этих элементов в осадках Мирового океана: до 99% кальция, 98% калия и свыше 60% натрия сосредоточено по данным В.В. Добровольского в осадочных породах.

Кремний

Кремний является вторым по распространенности (после кислорода) химическим элементом в земной коре. Его кларки в земной коре – 29,5, в почве – 33, в океане – 5х10-5. Однако, несмотря на огромную распространенность кремния и его соединений в природе (кварц и силикаты составляют 87% литосферы), биогеохимические циклы кремния (особенно на суше) изучены еще недостаточно.

Недаром В.И. Вернадский считал, что никакой организм в биосфере не может существовать без кремния, необходимого для образования клеток и тканей растений и животных, их скелетов. Живое вещество извлекает кремний из природных вод и почв для питания и функционирования биохимических процессов, высвобождая его затем с экскрементами и при отмирании. В результате отмирания миллиардов организмов огромные массы кремнезема откладываются на дне водоемов. Так формируется биогеохимический цикл кремния. В.И. Вернадский подчеркивал, что историю кремнезема нельзя понять без изучения результатов жизнедеятельности организмов. Возможно кремнезем в протерозойских железистых кварцитах в значительной части был также биогенным.

М.Страхов доказал возможность исключительно биогенного извлечения SiO2 из поверхностных вод. Однако, поступление растворенного кремнезема в океан с суши недостаточно для нормального развития фитопланктона. Именно поэтому в умеренных и тропических широтах в океане слабо развиты организмы с кремнистым скелетом. При существующей насыщенности воды кремнеземом для нормального развития фитопланктона диатомовых водорослей каждый атом кремния должен в течение года использоваться многократно (десятки и даже сотни раз). Из всей массы кремнезема, продуцированного в поверхностном фотосинтезирующем слое, донных отложений достигает не более 0,1части, а нередко это только 0,05-0,01 часть. Остальной кремнезем снова переходит в водорастворимое состояние. В дальнейшем, он захватывается из воды новыми поколениями диатомовых водорослей, кремнистых губок и радиолярий. Тем не менее, доходящая до дна 0,1-0,01 часть остатков скелетов диатомового планктона приводит к значительным по масштабам накоплениям осадочных кремнистых пород. Эта ветвь кругооборота кремния относительно статична и необратима и часть кремнезема именно таким путем выводится из биогеохимического круговорота.

Для нас важнее другая, более динамичная ветвь круговорота, которая и является собственно цикличной. Это тот кремний, который много раз за год переходит из организмов фитопланктона в окружающую среду и обратно. В этих переходах проявляется наиболее важная функция водного биогеохимического цикла кремния – функция массо- и энергопереноса вещества из поверхностных в более глубокие зоны Мирового океана.

Вторая особенность биогеохимического цикла кремния в Мировом океане – его неразрывная связь с углеродом.

Континентальная ветвь круговорота кремния сложна. Водная миграция кремнезема тесно связана с ландшафтно-геохимическими условиями: составом растительности, и литологией подстилающих отложений. Подвижность кремнезема резко возрастает с увеличением рН среды, особенно, в щелочном интервале. При рН=10-11 концентрация кремнезема может достигать 200 мг/л. Сильно увеличивает растворимость аморфного кремнезема и повышение температуры. Сульфаты, бикарбонаты и карбонаты магния и кальция резко снижают растворимость кремнезема и вызывают его осаждение (карбонатно-кремнистые безрудные разновидности железистых кварцитов). В условиях сильнокислой среды рН=1-2 растворимость кремнезема также сильно повышается. (так образуются вторичные кварциты в вулканических ассоциациях при его переотложении) Некоторые растения являются концентраторами кремния (крапива)

Мощным механизмом, приводящим в движение этот круговорот является растительный покров суши, в котором происходят разнообразные процессы образования содержащих кремний органогенных минералов (биолитов). Под биолитами в данном случае понимаются минералы, образующиеся внутри организма в процессе его жизнедеятельности. Их роль в круговороте кремния чрезвычайно велика, но изучена недостаточно. В основном, кремнезем инкрустирует клеточные оболочки. Больше всего биолитов кремнезема содержат злаки, осоки, хвощи, папоротники, мхи, пальмы, хвоя сосен, елей, листья и кора вяза, осины, дуба. В золе ковылей содержание кремнезема по данным Парфенова и Ярилова может достигать 80%. В стволах бамбука иногда обнаруживаются образования, сложенные опалом, достигавшие в длину 4 см и имевшие массу до 16 г! Генезис почвенной кремнекислоты в некоторых условиях напрямую связан с накоплением этого элемента живыми организмами. Наиболее яркий пример – образование солодей, кремнекислота которых накапливалась благодаря деятельности диатомовых водорослей. В процессе жизнедеятельности сине-зеленых водорослей происходит «захват» железа, марганца и кремнезема с образованием биолитов. Соотношение процессов накопления и выноса кремнезема в условиях умеренной зоны сдвинуто в сторону накопления. Растительный покров суши, особенно хвойные леса, выступает как мощный механизм, перекачивающий массы кремнезема из горных пород, почв и природных вод, и возвращающий их снова в ландшафт в форме биолитов. В дальнейшем опал биолитов переходит в халцедон и даже во вторичный кварц. Значительная же часть кремнекислоты биолитов включается в активную миграцию в почвенно-грунтовых водах в форме коллоидных и истинных растворов.

В результате воздействия аэрозолей кремнезема на живые организмы (животные и человек) развивается серьезное заболевание – силикоз.

Биогеохимические циклы алюминия, железа и марганца

Алюминий один из трех наиболее распространенных элементов земной коры. Его кларк – 8,05. Железо по распространенности занимает второе место после алюминия среди металлов и четвертое среди всех элементов земной коры. Его кларк составляет 4,65. Содержание марганца в земной коре значительно ниже -0,1%. Эти два элемента занимают соседние места в периодической системе элементов Д.И. Менделеева и имеют сходное строение электронных оболочек. Однако марганец мигрирует более активно, т.к. значение рН, при котором выпадает в осадок его гидроксид, выше, чем для железа. Железо и марганец активно вовлекаются в биологический круговорот, так как входят в состав многих ферментов. Железо участвует в образовании хлорофилла и входит в состав гемоглобина. Марганец принимает участие в окислительно-восстановительных реакций – дыхании, фотосинтезе и усвоении азота. Участие алюминия в биологическом круговороте ограничено. Хотя в земной коре это самый распространенный металл, биофильность его очень низкая, кларк живого вещества всего 5х10-3.

Биогеохимичекие циклы железа и марганца в решающей степени зависят от условий увлажнения, реакции среды, степени аэрации почвы, условий разложения органического вещества. Миграция алюминия в меньшей степени зависит от окислительно-восстановительных условий, так как он обладает постоянной валентностью. В то же время, амфотерность этого элемента обуславливает сильную зависимость его миграции от кислотно-основных условий среды: в сильно кислой среде он ведет себя как катион, а в сильно щелочной – как анион. В нейтральных и слабощелочных водах степей и пустынь он почти не мигрирует, наиболее высока подвижность этого металла в сильно кислых водах районов активного вулканизма и зон окисления сульфидных месторождений. Под защитой органических коллоидов алюминий активно мигрирует в болотных водах. Тем не менее, интенсивность миграции алюминия в целом значительно ниже, чем у железа и марганца, а его минералы более устойчивы. Слабая подвижность алюминия определяет остаточное (за счет выноса более подвижных элементов) накопление его гидроксидов в коре выветривания влажных тропиков и образование бокситов.

Известно, что соединения алюминия, железа и марганца в почвах с промывным режимом мигрируют в вертикальном направлении и образуют иллювиальные горизонты, обогащенные полуторными окислами и марганцем. Многими исследователями доказано, что миграция полуторных окислов в условиях промывного типа водного режима происходит в виде высокодисперсных золей, стабилизированных кислым гумусом. При этом немаловажную роль играет создание анаэробной обстановки, обуславливающей образование соединений двухвалентного железа и марганца. Решающее значение имеют агрессивные фульвокислоты, разрушающие почвенные минералы и образующие с алюминием, железом и марганцем легкоподвижные комплексные соединения.

Соединения железа и марганца активно мигрируют с боковым внутрипочвенным стоком, образуя скопления конкреций в болотах луговых и глеевых почвах, мелководных озерах и лагунах. Это свидетельствует о способности этих соединений мигрировать на весьма большие расстояния. Осаждение железа в аккумулятивных ландшафтах происходит в виде карбонатов железа, окислов разной степени гидратированности, а также фосфатов и гуматов. В степях и пустынях в условиях щелочной среды эти элементы мигрируют слабо.

Миграция железа и марганца возможна и в составе живого вещества. После отмирания организмов и их минерализации в почве часть этих элементов закрепляется в почве, другая же часть поступает в природные воды. Возвращаясь в почву, они начинают новый биогеохимический цикл.

В результате процессов выветривания железо в огромных количествах выносится в океаны. Вынос железа реками в океан происходит в разнообразных формах – в виде грубых взвесей обломков минералов и пород, содержащих железо в кристаллической решетке (силикатов, в т.ч. глинистых минералов), в виде коллоидов, содержащих железо в абсорбированном состоянии, в виде гидратов, гуматов и органических соединений закисного железа.

Недостаток железа приводит у растений к заболеванию, известному под названием хлороз. Однако непосредственное накопление железа в значительных количествах характерно лишь для немногих организмов. В этом отношении уникальны железобактерии, окисляющие двухвалентное железо, в результате чего образуется лимонит. Диатомовые водоросли способны усваивать железо из нерастворимых коллоидов. Железо потребляет и зоопланктон с красной кровью (мелкие рачки). При гибели этих организмов и растворения детритовых частей определенное количество железа также переходит в раствор в виде гидратов и других форм. В качестве особых случае концентрации железа организмами можно отметить наличие магнетита и гетита в в зубах некоторых современных гастропод.

Биогеохимический цикл железа и марганца существенно нарушается техногенными процессами, причем, несмотря на значительно более высокое содержание в земной коре железа, технофильность этих элементов примерно равна. В ноосфере алюминий играет исключительно важную роль, но технофильность его почти в 100 раз ниже, чем у железа.

Биогеохимические циклы тяжелых металлов.

Тяжелыми металлами обычно называют химические элементы, имеющие атомную массу более 50 единиц. Несмотря на сравнительно низкую распространенность этих элементов в природе, они оказывают большое влияние на биогеохимические процессы в биосфере. Так как многие изних оказывают выраженное токсическое действие на живые организмы.

Многочисленными исследованиями установлено, что наиболее токсичными являются следующие 9 элементов: Cr, As, Ni, Sb, Pb, Vo, Cd, Hg, Ta. Польские ученые провели ранжирование тяжелых металлов по потенциалу загрязнения на 4 группы. К группе элементов с очень высоким потенциалом загрязнения отнесены кадмий, ртуть, свинец, медь, таллий, олово, хром, сурьма, серебро, золото.

К группе элементов с высоким потенциалом загрязнения относятся висмут, уран. Молибден, барий, марганец, титан, железо, селен, теллур. К группе элементов со средним потенциалом загрязнения относятся фтор, бериллий, ванадий, рубидий, никель, кобальт, мышьяк, германий, индий, цезий, вольфрам. Элементы со слабым потенциалом загрязнения – стронций, цирконий, лантан, ниобий.

Как видно, 4 металла из первой группы (с очень высоким потенциалом загрязнения) – свинец, ртуть, кадмий и хром

В известной степени каждый крупный город является причиной возникновения биогеохимических аномалий, в том числе и опасных для человека.

Общеизвестно, что накопление свинца и цинка происходит в зонах интенсивного движения автотранспорта, вдоль автострад и в индустриальных центрах. Почвы в сельской местности содержат в 10-20 раз меньше свинца. Чем почвы городов. Свинец обладает способностью накапливаться в органическом веществе почв.

Доступность тяжелых металлов растениям зависит от вида растений, почвенных и климатических условий. У каждого вида растений концентрации тяжелых металлов могут варьировать в различных частях и органах, а также зависят от возраста растений.

К почвенным факторам, существенно влияющим на доступность для растений тяжелых металлов относятся: гранулометрический состав, реакция среды почвы, содержание органического вещества, катионообменная способность и дренаж. В более тяжелых почвах меньшая опасность возможной адсорбции растениями избыточного (токсичного) количества тяжелых металлов. С повышением рН почвенного раствора возрастает вероятность образования нерастворимых гидроксидов и карбонатов. Сложилось мнение, что для снижения до минимума доступности токсичного металла в почве необходимо поддерживать рН не ниже 6,5. Металлы могут образовывать сложные комплексные соединения с органическим веществом почвы, и поэтому в почвах с высоким содержанием гумуса они менее доступны для поглощения растениями. Обменная емкость катионов зависит, главным образом, от содержания и минералогического состава глинистой части почв и содержания в них органического вещества. Чем выше обменная емкость катионов, тем больше удерживающая способность почв по отношению к тяжелым металлам.

Избыток воды в почве способствует появлению в ней металлов с низкой валентностью в более растворимой форме.

Приоритетные загрязнители биосферы – ртуть, свинец, кадмий, цинк, медь. Увеличение их концентрации в воде, почве, воздухе и биоте является прямым показателем опасности для животных и человека.


Так же, как круговорот углерода и другие круговороты, охватывает все области биосферы. В круговороте соединений азота ключевое значение принадлежит микроорганизмам: азотфиксаторам, нитрификаторам и денитрификаторам. Другие же организмы оказывают влияние на круговорот азота лишь после того, как он войдет в состав их клеток. Как известно, бобовые и представители некоторых родов других сосудистых растений (например, ольха, араукария, лох) фиксируют азот с помощью бактерий-симбионтов. То же наблюдается и у некоторых лишайников, фиксирующих азот с помощью симбиотических сине-зеленых водорослей. Очевидно, что биологическая фиксация молекулярного азота свободноживущими и симбиотическими организмами происходит и в автотрофном, и в гетеротрофном звеньях экосистем.
Из огромного запаса азота в атмосфере и осадочной оболочке литосферы в круговороте его участвует только фиксированный азот, усваиваемый живыми организмами суши и океана. В категорию обменного фонда этого элемента входят: азот годичной продукции биомассы, азот биологической фиксации бактериями и другими организмами, ювенильный (вулканогенный) азот, атмосферный (фиксированный при грозах) и техногенный
Нетрудно заметить, что, за исключением растительности тундры, где содержание азота и зольных элементов примерно одинаково, в растительности почти всех других типов масса азота в 2... 3 раза меньше массы зольных элементов. Количество элементов, оборачивающихся в течение года (т.е. емкость биологического круговорота), наибольшее в тропических лесах, затем в черноземных степях и широколиственных лесах умеренного пояса (дубравах).

Различают три типа азотфиксации:

Свободноживущими бактериями самых разнообразных таксономических групп.

Ассоциативная азотфиксация бактериями, находящимися в тесной связи с растениями (в прикорневой зоне или на поверхности листьев) и использующие их выделения (корневые выделения составляют до 30 % продукции фотосинтеза) как источник органического вещества. Азотфиксаторы живут в кишечнике многих животных (жвачные, грызуны, термиты) и человека (род Escherichia ).

Симбиотическая. Наиболее известен симбиоз клубеньковых бактерий (сем. Rhizobiaceae ) с бобовыми растениями. Обычно происходит корневое заражение, но известны растения, образующие клубеньки на стеблях и листьях.

Созданы бактериальные удобрения (например, нитрагин) для инокуляции (заражения) штаммами клубеньковых бактерий семян бобовых культур, что увеличивает их урожайность. Также для стимулирования процессов азотфиксации полезно вносить в почву небольшие «стартовые» дозы азотных удобрений, в то время как большие их дозы подавляют процесс.

Биогеохимический круговорот углерода в естественных условиях и влияние на круговорот загрязнения среды.

На суше круговорот углерода начинается с фиксации углекислого газа растениями в процессе фотосинтеза. Далее из углекислого газа и воды образуются углеводы и высвобождается кислород. При этом углерод частично выделяется во время дыхания растений в составе углекислого газа. Фиксированный в растении углерод в некоторой степени потребляется животными. Животные при дыхании так же выделяют углекислый газ. Отжившие животные и растения разлагаются микроорганизмами, в результате чего углерод мертвого органического вещества окисляется до углекислого газа и снова попадает в атмосферу. Подобный круговорот совершается и в океане.

История развития биогеохимических циклов азота на планете сложна и противоречива. Азот вошел в состав земной планеты в результате конденсации межзвездного космического протопланетарного вещества, которое включало азот и его различные соединения (NO, NH3, HC3N и др., см. табл. 6).
Радиоактивные разогревы планеты, образование расплавленной мантии сопровождались выделением газообразных соединений азота и накоплением его в первичной атмосфере, в составе которой N2 доминирует («-ДО15 т) и в настоящее время. Остывающая лава, газовые фумаролы вулканов продолжают поставлять в биосферу азот, его окислы, хлористый и углекислый аммоний.
Электрохимические разряды, фотохимические реакции, сверхвысокие температуры и давление способствовали возникновению на планете неклеточных молекулярных форм органических азотистых соединений.
Появление свободно живущих азотфиксирующих бактерий и бактерий гетеротрофов, вероятно, положило начало биогенному обогащению первичной биосферы соединениями азота, образованию аминокислот, белков, минеральных соединений азота (аммонийных, азотнокислых солей). Не исключено, что биогенная фиксация азота предшествовала возникновению фотосинтеза, протекала в бескислородной анаэробной обстановке далекого прошлого и осуществлялась микроорганизмами типа клостридиум. Бактерии этого рода и поныне являются важнейшими агентами фиксации азота в анаэробных условиях.
Биологическая фиксация азота микроорганизмами распространена в природе значительно шире, чем это представлялось 20-30 лет назад. Кроме бактерий группы Rhizobium, фиксирующих азот в клубеньковых образованиях на корнях бобовых растений, широко развита несимбиотическая (ассоциативная) фиксация азота многочисленными гетеротрофными бактериями и грибами (Умаров, 1983). Этот тип фиксации азота осуществляется сотнями видов разнообразных микроорганизмов, проживающих в ризосфере растений, в почве и на поверхности стеблей и листьев (фил- лосфера).
В среднем ассоциативная (несимбиотическая) фиксация азота в экосистемах составляет в. год 40-50 кг/га; но в мировой литературе есть указания на то, что несимбиотическая фиксация азота в условиях тропиков достигает 200-600 кг/га в год (Умаров, 1983). При этом большая часть (gt; 90%) масса азота фиксируется в ризосфере с использованием энергии корневых выделений и отмирающих мелких корешков. Поэтому при наличии покрова растительности почвы всегда фиксируют в несколько раз больше азота, чем почвы чистых паров.
Как установлено исследованиями Умарова (1983), ассоциативная фиксация азота характерна для большинства видов травянистых и многих древесных растений, включая и культурные их формы. Высокой потенциальной способностью фиксации азота в ризосфере отличаются луговые, черноземные и каштановые почвы (90-330 кг/га), а также горно-лесные почвы Кавказа (до 180 кг/га). Только за вегетационный период на полях этот вид фиксации может дать почвам 30-40 кг/га дополнительного азота. Это и не удивительно, так как азотфиксирующие микроорганизмы могут составлять от 20 до 80% их общей численности.
(Существует явная положительная связь между процессами фиксации азота микроорганизмами и фотосинтезом растений в экосистемах. Чем выше продуктивность фотосинтеза растений, тем больше азота фиксируется в почвах. \Это важнейший механизм биогеохимии азота в биосфере и в земледелии.
\ Велика в биогеохимии азота роль синезеленых водорослей, многочисленные виды которых также обладают способностью фиксировать азот одновременно с процессом фотосинтеза. Синезеленые водоросли (Cyanophyta) обогащают азотом почвы, особенно орошаемые рисовники, речные, озерные и болотные воды и наносы. Но они живут и на поверхности голых скал или пустынных почв (табл. 21).
Развитие растительного покрова и связанных с растениями микроорганизмов значительно усилило вовлечение азота атмосферы в состав биомассы. Усложнение форм жизни на планете вызвало удлинение пищевых цепей, накопление живой и мертвой органики на суше и в океане. Это создало возможность длительного существования органических соединений азота в биосфере и литосфере. Особенно велика в этом роль травянистых растений. Наземная и подземная части травянистой растительности ежегодно потребляют от 20-25 до 600-700 кг/га азота (обычно корни содержат в 2-6 раз больше азота, чем наземная часть). При этом суммарная биомасса, как правило, содержит углерода в 10-50 раз больше, чем азота. Все это подтверждает огромную общую роль углерода и азота в создании фитомассы (Титлянова, 1979). Но соединения азота легко выщелачиваются из тканей растений влагой дождей. Поступая в почвы, они повторно потребляются растениями.
Насколько сложны и мало еще изучены биогенные циклы азота, свидетельствуют установленные факты передачи соединений азота от растения к растению (одного и различных видов) через корневые выделения в почву, а возможно, прямым контактом корешков. Этот удивительный механизм показывает, как ’’экономны” растения в азотном питании. Вероятно, это явление существует и в биогеохимии других элементов.
Как известно, белковость зерна пшеницы и содержание в них азота возрастает с уменьшением атмосферных осадков в степях Русской равнины. Это уже установлено и для содержания общего азота в биомассе травянистых растений. В степных условиях содержание азота в сухой биомассе трав достигает 2-2,6%; при увеличении влажности оно снижается до 1-1,5%.
Все эти факты свидетельствуют о громадной роли растительного покрова (особенно трав) и микроорганизмов в биогеохимии азота на суше. Развитие растительного покрова, возникновение почвообразовательного процесса (300-400 млн. лет назад), формирование гумусовой оболочки и почвенного мелкозема, его снос и накопление в виде толщ осадочных пород расширили процесс перевода азота атмосферы в биосферу, подняв его содержание в последней до уровня п 1015 т.
В то же время необходимо подчеркнуть, что возврат азота в атмосферу через денитрификацию - столь же универсальный процесс, как фиксация


и нитрификация. Этим процессом обеспечивается глобальный круговорот азота на планете.
Окислительно-восстановительные условия внутри почв весьма гетеро- генны. Даже в аэрированных почвах есть участки с дефицитом кислорода, где может происходить денитрификация. Обилие свежей подвижной органики и пересыщение почв влагой всегда резко усиливают процессы денитрификации после дождей, при заболачивании, при орошении. Еще более выражена денитрификация в водных ландшафтах (болота, озера, эстуарии и т.д.).
Этот направленный общепланетарный биогеохимический процесс имеет полициклический характер. Преобладающая часть фиксированного в природе азота через микроциклические повторные превращения, нитрификацию и денитрификацию в конечном счете возвращается в виде молекулярного газообразного азота (N2) в атмосферу. Но по мере становления биосферы нарастали продолжительность существования и размеры массы органических и минеральных биогенных соединений азота на планете. Увеличилось количество погребенных органических осадков. Продолжительность отдельных микроциклов общеземного биогеохимического круговорота азота колеблется в настоящую эпоху от малой (дни, недели, месяцы) в тканях микроорганизмов до значительной (годы) в экосистемах травянистой растительности и до большой (десятилетия, столетия, тысячелетия) в древесных экосистемах и в почвенном гумусе. Полные земные циклы азота, оказавшегося в осадках рек, озер, морей, в горючих ископаемых земной коры, охватывают время порядка десятков тысячелетий, сотен тысяч и миллионов лет.
Естественные биогеохимические циклы азота (как и углерода) в биосфере были ’’почти замкнутыми”, но имели характер направленного расширенного воспроизводства запасов в биосфере. Биосфера не только не отдавала полностью захваченные массы азота и углерода, но прогрессивно увеличивала их суммарные запасы в фиксированной форме (в гумусе, торфе, в массе ископаемых углей, нефти, сланцах, битумах и т.д.) .
Антропогенная эпоха внесла заметные изменения в сложившиеся природные циклы азота. Главное, что произошло и происходит, это (кроме земле-

Рис. 47. Мировое производство удобрений (данные ФАО)
1 - общее; 2 - азот; 3 - фосфор; 4 - калий

делил) появление в биосфере нового антропогенного промышленного механизма фиксации масс азота в виде десятков миллионов тонн азотных удобрений, а также поступление в окружающую среду окислов азота от больших масс сжигаемых ископаемых топлив (теплоцентрали, транспорт^ авиация, ракеты). Техногенные источники соединений азота в биосфере быстро растут, удваиваясь каждые 6-7 лет. Уже в 70-80-х годах XX в. ежегодно в мире производится (в расчете на азот) 50-60 млн. т/год азотных удобрений (табл. 22). В начале XXI в. эта величина может достигнуть 100-150 млн. т/год. Вероятно, к этому времени техногенный приток азота в биосферу может сравняться со всеми биогенными формами его поступления или превысить их (рис. 47).
В антропогенную эпоху, особенно в современный период, процесс обогащения окружающей среды соединениями азота заметно усилился. Как нами отмечалось ранее, происходит процесс техногенной азотизации окружающей среды, сопровождаемый сложным комплексом положительных (рост урожаев, увеличение доли белков в питании) и отрицательных (канцер, метогемоглобинемия, увеличение кислотности почв и атмосферных осадков) последствий. Уничтожение лесов, степей (и микоризы), замена бобовых злаками, разрушение гумусовых горизонтов почв, богатых микрофлорой, сокращение поверхности почв также вызвали дополнительные изменения в биогеохимии азота в биосфере. Все эти изменения, часто противоположного характера, не изучены и не оценены количественно. По-видимому, все же намечается тенденция уменьшения роли биогенной фиксации азота в общем круговороте его на планете.
Именно на этом фоне нарушений нормального круговорота азота в природе минеральные удобрения почв внесли отмеченные выше изменения

Таблица 22. Производство минеральных удобрений на 1980 г., тыс. т (по данным ФА О)


Континенты и страны

Азот

Фосфор

производство

потребление

производство

Северная Америка

11 829

10 490

9 212

Западная Европа

11 137

9 418

5 881

Всего в капиталистических

25 154

21 287

17 642

странах




Африка

167

494

673

Латинская Америка

1 343

2 488

1 532

Всего в развивающихся странах

7 115

10 165

3 982

Всего в социалистических странах

21 527

19 993

10 856

Итого в мире

53 795

51 445

32 480

*В туках это составляет 350-400 млн. т/год.



в приходные статьи баланса азота и в географию его распределения, а также подняли общий уровень концентрации нитратов и аммонийных солей в почвах и водах. Но еще более серьезным фактором нарушения баланса, уровня концентрации и форм соединения азота в атмосфере и особенно в гидросфере и почвах оказалось современное топливно-энергетическое и транспортное хозяйство.
По ориентировочным данным, эмиссия аммиака и различных окислов азота при сжигании угля, нефти, мазута, бензина, торфа, сланцев и т.д. вместе составляет ежегодно около 200-350 млн. т в виде газов и аэрозолей. Окисление аммиака и окислов азота приводит к образованию главным образом азотной кислоты и отчасти аммонийных солей, выпадающих на сушу и поверхность океана. Если эти цифры преувеличены даже в два раза, все же приходится признать, что эмиссия соединений азота в атмосферу уже стала заметным компонентом в приходных статьях азотного цикла на нашей планете.
В свете этих фактов необходимо глубже понять будущие нужды земледелия в азотных удобрениях, пути глобальной, воздушной и водной миграции соединений азота на планете и выяснить области, где преимущественно происходит накопление азотнокислых и аммонийных соединений. Это тем более необходимо, что выбросы окислов азота в атмосферу будут продолжаться и даже увеличиваться. Уже установлены факты выпадения подкисленных атмосферных вод в Канаде, Скандинавии, США, что сопровождается снижением pH почв и местных вод (обычно под влиянием совместных выпадов с разбавленными растворами серной кислоты). Подкисление среды будет усиливать выветривание минералов, вынос из почв кальция, магния и других элементов питания растений, что увеличит потребность в известковании полей.
Следует указать еще на один фактор нарушения нормального уровня концентрации и круговорота азота в природе. Это отходы индустриального животноводства и птицеводства, а также отбросы и стоки нечистот современных крупных городов. Отходы и стоки этого происхождения очень

Фосфор

Калий
/>Всего

потребление

производство

потребление

производство

потребление

5 660

8 673

5 984

29 714

22 134

6 059

5 340

5 476

22 358

20 952

14 308

14 666

12 578

57 461

48 173

698

_

222

841

1113

2 274

11

1 464

2 886

6 223

5 567

И

2 889

11 108

18 622

10 632

11 826

9 320

44 209

39 945

30 508

26 503

2 4787

112 778

106 740*

велики. В мире насчитывается более 3 млрд, голов скота, производящих огромные количества отходов. Современные птицефабрики, предприятия индустриального животноводства, города создают многочисленные очаги аномально высокого содержания азота и фосфора в виде органических и минеральных соединений, которые локально пресыщают почвы, ручьи, реки, озера, устья рек и эстуарии. Иногда в таких почвах содержание N-N03 достигает 400 частей на миллион (ppm), a N-NH4 - до 2200 ppm.
По мнению ученых, городские стоки, отходы животноводства и эрозия почв играют не меньшую, а иногда и большую роль в загрязнении почв и вод соединениями азота, до токсичного уровня (Cooke, Williams, 1970).
Повышение концентрации соединений азота в природных водах является тревожным фактом. В речных водах лесных областей умеренного климата содержание нитратов достигает 0,3-0,5 мг/л, а аридного климата - 1,2- мг/л. В дренажных водах оросительных систем концентрация N03 обычно около 5-6 мг/л, но бывает и 10-15 мг/л. В почвенных растворах засоленных орошаемых почв наблюдались концентрации N03 до 100- 300 мг/л. В грунтовых водах иногда бывает концентрация нитратов порядка 10-15 и даже 50-100 мг/л. За 25 лет (1945-1970 гг.) регулярных наблюдений в штате Иллинойс содержание нитратного азота в водах поверхностного стока, по средним и максимальным данным, увеличилось в два- три и даже четыре раза (табл. 23).
Обогащаются избыточными концентрациями нитратов не только поверхностные воды, но и воды подземные - главный источник снабжения населения питьевой водой. Нитраты проникают в подземные воды на глубины 10-15 м и даже больше, вызывая повышение их концентрации до 10- 15 мг/л N, что уже явно опасно для людей (в пересчете на N03 это составляет 45-60 мг/л).
Подсчитан суммарный баланс азота для территории США (Accumulation of Nitrate, 1972). Общие поступления азота в почвы США выражаются величиной 21,0 млн. т N в год (в том числе с атмосферными осадками млн. т, с минеральными удобрениями 7,5 млн. т и биогенная фикса-


Таблица 23. Концентрация нитратного азота и количество азота в водах поверхностного стока на отдельных водоразделах штата Иллинойс (NAS of USA, 1972)



Таблица 24. Оценка потребления и возврата азота на территории США в 1970 г.

Фиксация не сим биотическая 1,2
Фиксация симбиотическая 3,6
Поступление с осадками 5,6
Химическая фиксация 7,5
Минерализация органического азота почвы 3,1
О бщее поступление 21,0
Использование в питании растений-животных-человека и сырье Производство волокна 0,2
Производство сахара 0,6
Производство протеина растительного происхождения 0,9
Производство протеина животного происхождения 15,1
Общее количество 16,8
Общее потребление ^ 21,0
Не использованный в пищевых цепях (разность) 4,2
Судьба азота, вовлеченного в питание и сырье Потре бляе мый людьми 1,2 />Потребляемый животными 4,2
Другие расходы 15,6
Годовой возврат в атмосферу
В форме аммония или окислов азота с парами воды 5,6
Потери за счет денитрификации в сточных водах 5,0
Денитрификация из почвы 8,9
Общее количество 19,5
Общее поступление 21,0
Ежегодное количество, удервкиваемое почвой и водой 1,5 ция 4,8 млн. т). Из этого количества около 17 млн. т идет на производство продуктов питания и текстильное сырье, а 4 млн.т не используется (табл. 24).
Все виды денитрификации (в том числе в водной среде более 10 млн. т) составляют около 18,5 млн. т, и около 1,5 млн. т ежегодно остается в почвах и водах (см. табл. 24). Данные по денитрификации здесь явно
преувеличены. Остаток азота в водах и почвах по крайней мере в два-три раза выше.
В итоге рассмотрения элементов современного биогеохимического цикла азота на суше намечаются следующие главные формы поступления его соединений: биогенная фиксация азота в почвах микроорганизмами симбиотического и несимбиотического типа; 2) поступление в растворы с метаболитами пищевых цепей, с отмершим органическим веществом, с продуктами минерализации органического вещества почв; 3) поступление окислов азота из продуктов сжигания горючих ископаемых; 4) внесение соединений азота в почвы в виде органических и минеральных удобрений; перенос и накопление нитратов при испарении грунтовых вод.
Расходные статьи баланса азота на суше слагаются из следующих главных форм: 1) поглощение соединений минерального азота высшими и низшими растениями и уход их в пищевые цепи экосистем; переход соединений азота в органические формы с образованием гумуса; денитрификация и возвращение в конечном счете в атмосферу большей части азота в газообразной молекулярной форме N2 и частично в форме окислов и аммиака; смыв, вынос и отчуждение соединений азота из биологических циклов в геологические; захоронение на геологически длительное время в осадочных породах, в горючих ископаемых или соляных месторождениях.

И воздействие на них человека

Биогеохимические циклы биогенных элементов

Биогенными элементами, то есть элементами, играющими важную роль в жизнедеятельности практически всех живых организмов, являются азот, кислород, углерод, фосфор, сера и некоторые другие.

Круговороты азота, кислорода и углерода имеют резервные фонды в атмосфере (круговороты газообразных веществ). Круговороты фосфора и серы относятся к осадочным циклам.

Азот является основным газом атмосферы, где его объемная доля составляет 78%. Биосферный круговорот азота хорошо отрегулирован и носит замедленный характер.

Большинство живых организмов может использовать азот только в виде сложных соединений с другими элементами. Азот входит в состав белков и других важных органических соединений, составляющих живые клетки.

Перевод азота из одних неорганических соединений (оксидов азота, аммиака, нитратов, нитритов, солей аммония) в другие происходит при помощи особых бактерий: азотфиксирующих, денитрифицирующих, нитратных, нитритных и др.

На рис. представлена схема круговорота азота в атмосфере.

Газообразный азот атмосферы поглощается азотфиксирующими бактериями (и некоторыми видами водорослей), в процессе жизнедеятельности которых образуются растворимые соединения азота. Определенная разновидность бактерий образуют соединения азота, непосредственно поглощающиеся растениями. Примером такого вида бактерий являются «клубеньковые», живущие на корнях растений из семейства бобовых и обуславливающие образование характерных вздутий − «клубеньков».


Рис.3 Биогеохимический цикл азота

Сравнительно небольшое количество атмосферного азота реагирует с кислородом в результате воздействия газовых разрядов. Образующиеся кислые соединения азота с дождями попадают в почву.

Растения (продуценты) потребляют образованные бактериями соединения азота и синтезируют на их основе сложные органические соединения. Образованные растениями вещества могут передаваться животным (консументам) в процессе питания.

Соединения азота, образующиеся в процессе жизнедеятельности продуцентов и консументов, со временем попадают в почву. При распаде органических соединений азота образуются неорганические вещества. Важную роль в этом процессе играют аммонифицирующие бактерии, которые получают необходимую им энергию в процессе восстановления органических азотсодержащих веществ до аммиака и солей аммония.

Обитающие в почве нитратные и нитритные бактерии осуществляют сложный процесс нитрификации, включающий ряд последовательных реакций преобразования ионов аммония (NH 4 +) до нитрат-ионов (NO 3 −), которые могут опять использоваться растениями-продуцентами. Таким образом, почвенные бактерии, продуценты и консументы образуют малый (биологический) круговорот азота − важную часть его биогеохимического цикла.



В почве также происходит процесс денитрификации: под действием денитрифицирующих бактерий из растворимых соединений азота образуются газообразные вещества − происходит возвращение азота в атмосферу.

Определенное количество азота на сотни тысяч лет выключается из круговорота, переходя в глубинные отложения литосферы. Эти потери отчасти компенсируются поступлением азота в атмосферу с вулканическими газами при извержении вулканов. Газообразные соединения азота выделяются также при сжигании каменного угля, торфа, при горении различных органических веществ.

Человек оказывает существенное влияние на перемещение азота в биосфере. В результате деятельности человека в растворимые соединения азота (нитраты, нитриты, соли аммония) переводится азота на 60 % больше, чем в процессе жизнедеятельности всех других организмов. Но, благодаря большому резервному фонду в атмосфере, недостаток азота быстро восполняется за счет перемещения газообразных веществ. Поэтому круговорот азота в настоящее время сохраняет цикличность и относится к числу наиболее отлаженных природных круговоротов.

Круговорот углерода.

Самый интенсивный биогеохимический цикл – круговорот углерода. В

природе углерод существует в двух основных формах – в карбонатах

(известняках) и углекислом газе. Содержание последнего в 50 раз больше, чем

в атмосфере. Углерод участвует в образовании углеводов, жиров, белков и

нуклеиновых кислот.

Основная масса аккумулирована в карбонатах на дне океана (1016 т), в

кристаллических породах (1016 т), каменном угле и нефти (1016 т) и

участвует в большом цикле круговорота.

Основное звено большого круговорота углерода – взаимосвязь процессов

фотосинтеза и аэробного дыхания (рис. 1).

Другое звено большого цикла круговорота углерода представляет собой

анаэробное дыхание (без доступа кислорода); различные виды анаэробных

бактерий преобразуют органические соединения в метан и другие вещества

(например, в болотных экосистемах, на свалках отходов).

В малом цикле круговорота участвует углерод, содержащийся в

растительных тканях (около 1011 т) и тканях животных (около 109 т).

Круговорот кислорода .

В количественном отношении главной составляющей живой материи является

кислород, круговорот которого осложнён его способностью вступать в

различные химические реакции, главным образом реакции окисления. В

результате возникает множество локальных циклов, происходящих между

атмосферой, гидросферой и литосферой.

(осадочные кальциты, железные руды), имеет биогенное происхождение и должно

рассматриваться как продукт фотосинтеза. Этот процесс противоположен

процессу потребления кислорода при дыхании, который сопровождается

разрушением органических молекул, взаимодействием кислорода с водородом

(отщеплённым от субстрата) и образованием воды. В некотором отношении

круговорот кислорода напоминает обратный круговорот углекислого газа. В

основном он происходит между атмосферой и живыми организмами.

Потребление атмосферного кислорода и его возмещение растениями в

процессе фотосинтеза осуществляется довольно быстро. Расчёты показывают,

что для полного обновления всего атмосферного кислорода требуется около

двух тысяч лет. С другой стороны, для того, чтобы все молекулы воды

гидросферы были подвергнуты фотолизу и вновь синтезированы живыми

организмами, необходимо два миллиона лет. Большая часть кислорода,

вырабатываемого в течение геологических эпох, не оставалась в атмосфере, а

фиксировалась литосферой в виде карбонатов, сульфатов, оксидов железа, и её

масса составляет 5,9*1016 т. Масса кислорода, циркулирующего в биосфере в

виде газа или сульфатов, растворённых в океанических и континентальных

водах, в несколько раз меньше (0,4*1016 т).

Отметим, что, начиная с определённой концентрации, кислород очень

токсичен для клеток и тканей (даже у аэробных организмов). А живой

анаэробный организм не может выдержать (это было доказано ещё в прошлом

веке Л. Пастером) концентрацию кислорода, превышающую атмосферную на 1%.

Круговорот азота

Газообразный азот возникает в результате реакции окисления аммиака,

образующегося при извержении вулканов и разложении биологических отходов:

4NH3 + 3O2 (2N2 + 6H2O.

Круговорот азота – один из самых сложных, но одновременно самых

идеальных круговоротов. Несмотря на то что азот составляет около 80%

атмосферного воздуха, в большинстве случаев он не может быть

непосредственно использован растениями, т.к. они не усваивают газообразный

азот. Вмешательство живых существ в круговорот азота подчинено строгой

иерархии: только определённые категории организмов могут оказывать влияние

на отдельные фазы этого цикла. Газообразный азот непрерывно поступает в

атмосферу в результате работы некоторых бактерий, тогда как другие бактерии

– фиксаторы (вместе с сине-зелёными водорослями) постоянно поглощают его,

преобразуя в нитраты. Неорганическим путём нитраты образуются и в атмосфере

в результате электрических разрядов во время гроз.

Самые активные потребители азота – бактерии на корневой системе

растений семейства бобовых. Каждому виду этих растений присущи свои особые

бактерии, которые превращают азот в нитраты. В процессе биологического

цикла нитрат-ионы (NO3-) и ионы аммония (NH4+), поглощаемы растениями из

почвенной влаги, преобразуются в белки, нуклеиновые кислоты и т.д. Далее

образуются отходы в виде погибших организмов, являющихся объектами

жизнедеятельности других бактерий и грибов, преобразующих их в аммиак. Так

возникает новый цикл круговорота. Существуют организмы, способные

превращать аммиак в нитриты, нитраты и в газообразный азот. Основные звенья

круговорота азота в биосфере представлены схемой на рис. 3.

Биологическая активность организмов дополняется промышленными

способами получения азотосодержащих органических и неорганических веществ,

многие из которых применяются в качестве удобрений для повышения

продуктивности и роста растений.

Антропогенное влияние на круговорот азота определяется следующими

процессами:

1. сжигание топлива приводит к образованию оксида азота, а затем

реакциям:

2. 2NO + O2 (2NO2 ,

3. 4NO2 + 2H2O.+ O2 (4HNO3 ,

4. способствуя выпадению кислотных дождей;

5. в результате воздействия некоторых бактерий на удобрения и отходы

животноводства образуется закись азота – один из компонентов,

создающих парниковый эффект;

6. добыча полезных ископаемых, содержащих нитрат-ионы и ионы аммония,

для производства минеральных удобрений;

7. при сборе урожая из почвы выносятся нитрат-ионы и ионы аммония;

8. стоки с полей, ферм и из канализаций увеличивают количество нитрат-

ионов и ионов аммония в водных экосистемах, что ускоряет рост

водорослей и других растений; при разложении последних расходуется

кислород, что в конечном счёте приводит к гибели рыб.

Круговорот фосфора

Фосфор – один из основных компонентов (главным образом в виде и

) живого вещества и входит в состав нуклеиновых кислот (ДНК и РНК),

клеточных мембран, аденозинтрифосфата (АТФ) и аденозиндифосфата (АДФ),

жиров, костей и зубов. Круговорот фосфора, как и других биогенных

элементов, совершается по большому и малому циклам.

Запасы фосфора, доступные живым существам, полностью сосредоточены в

литосфере. Основные источники неорганического фосфора – изверженные или

осадочные породы. В земной коре содержание фосфора не превышает 1%, что

лимитирует продуктивность экосистем. Из пород земной коры неорганический

фосфор вовлекается в циркуляцию континентальными водами. Он поглощается

растениями, которые при его участии синтезируют различные органические

соединения и таким образом включаются в трофические цепи. Затем

органические фосфаты вместе с трупами, отходами и выделениями живых существ

возвращаются в землю, где снова подвергаются воздействию микроорганизмов и

превращаются в минеральные формы, употребляемые зелёными растениями.

В экосистеме океана фосфор приносится текучими водами, что

способствует развитию фитопланктона и живых организмов.

В наземных системах круговорот фосфора проходит в оптимальных

естественных условиях с минимумом потерь. В океане дело обстоит иначе. Это

связано с постоянным оседанием (седиментацией) органических веществ.

Осевший на небольшой глубине органический фосфор возвращается в круговорот.

Фосфаты, отложенные на больших морских глубинах не участвуют в малом

круговороте. Однако тектонические движения способствуют подъёму осадочных

пород к поверхности.

Таким образом фосфор медленно перемещается из фосфатных месторождений

на суше и мелководных океанических осадков к живым организмам и обратно

Рассматривая круговорот фосфора в масштабе биосферы за сравнительно

короткий период, можно сделать вывод, что он полностью не замкнут. Запасы

фосфора на земле малы. Поэтому считают, что фосфор – основной фактор,

лимитирующий рост первичной продукции биосферы. Полагают даже, что фосфор –

главный регулятор всех других биогеохимических циклов, это – наиболее

слабое звено в жизненной цепи, которая обеспечивает существование человека.

Антропогенное влияние на круговорот фосфора состоит в следующем:

1. добыча больших количеств фосфатных руд для минеральных удобрений и

моющих средств приводит к уменьшению количества фосфора в

биотическом круговороте;

2. стоки с поле, ферм и коммунальные отходы приводят к увеличению

фосфат-ионов в водоёмах, к резкому росту водных растений и

нарушению равновесия в водных экосистемах.

Круговорот серы

Из природных источников сера попадает в атмосферу в виде сероводорода,

диоксида серы и частиц сульфатных солей (рис. 5).

Около одной трети соединений серы и 99% диоксида серы – антропогенного

происхождения. В атмосфере протекают реакции, приводящие к кислотным

2SO2 + O2 (2SO3 ,

SO3 + H2O (H2SO4 .

Круговорот воды

Вода, как и воздух, - основной компонент, необходимый для жизни. В

количественном отношении это самая распространённая неорганическая

составляющая живой материи. Семена растений, в которых содержание воды не

превышает 10%, относятся к формам замедленной жизни. Такое же явление

(ангидробиоз) наблюдается у некоторых видов животных, которые при

неблагоприятных внешних условиях могут терять большую часть воды в своих

Вода в трёх агрегатных состояниях присутствует во всех составных

частях биосферы: атмосфере, гидросфере и литосфере. Если воду, находящуюся

в различных гидрогеологических формах, равномерно распределить по

соответствующим областям земного шара, то образуются слои следующей

толщины: для Мирового океана 2700 м, для ледников 100 м, для подземных вод

15 м, для поверхностных пресных вод 0,4 м, для атмосферной влаги 0,03 м.

Основную роль в циркуляции и биогеохимическом круговороте воды играет

атмосферная влага, несмотря на относительно малую толщину её слоя.

Атмосферная влага распределена по Земле неравномерно, что обуславливает

большие различия в количестве осадков в разных районах биосферы. Среднее

географической широты. Например, на Северном полюсе оно равно 2,5 мм (в

столбе воздуха с поперечным сечением 1 см2), на экваторе - 45 мм.

О механизме гидрогеологического цикла было сказано выше – в разделе

касающемся описания особенностей гидросферы. Вода, выпавшая на сушу, затем

расходуется на просачивание (или инфильтрацию), испарение и сток.

Просачивание особенно важно для наземных экосистем, так как способствует

снабжению почвы водой. В процессе инфильтрации вода поступает в водоносные

горизонты и подземные реки. Испарение с поверхности почвы также играет

важную роль в водном режиме местности, но более значительное количество

воды выделяют сами растения своей листвой. Причём количество воды,

выделяемое растениями, тем больше, чем лучше они ею снабжаются. Растения,

производящие одну тонну растительной массы, поглощают как минимум 100 т

Главную роль в круговороте воды на континентах играет суммарное

испарение (деревья и почва).

Последняя составляющая круговорота воды на суше – сток. Поверхностный

сток и ресурсы подземных водоносных слоёв обеспечивают питание водных

потоков. Вместе с тем при уменьшении плотности растительного покрова сток

становится основной причиной эрозии почвы.

Как уже отмечалось, вода участвует и в биологическом цикле, являясь

источником кислорода и водорода. Однако фотолиз её при фотосинтезе не

играет существенной роли в процессе круговорота.

Биогеохимические круговороты

В отличие от энергии, которая однажды использованная организмом,

превращается в тепло и теряется для экосистемы, вещества циркулируют в

биосфере, что и называется биогеохимическими круговоротами. Из 90 с лишним

элементов, встречающихся в природе, около 40 нужны живым организмам.

Наиболее важные для них и требующиеся в больших количествах: углерод,

водород, кислород, азот. Кислород поступает в атмосферу в результате

фотосинтеза и расходуется организмами при дыхании. Азот извлекается из

атмосферы благодаря деятельности азотофиксирующих бактерий и возвращается в

неё другими бактериями.

Круговороты элементов и веществ осуществляются за счёт

саморегулирующих процессов, в которых участвуют все составные части

экосистем. Эти процессы являются безотходными. В природе нет ничего

бесполезного или вредного, даже от вулканических извержений есть польза,

так как с вулканическими газами в воздух поступают нужные элементы,

например, азот.

Существует закон глобального замыкания биогеохимического круговорота в

биосфере, действующий на всех этапах её развития, как и правило увеличения

замкнутости биогеохимического круговорота в ходе сукцессии. В процессе

эволюции биосферы увеличивается роль биологического компонента в замыкании

биогеохимического круговорота. Ещё большую роль на биогеохимический

круговорот оказывает человек. Но его роль осуществляется в противоположном

направлении. Человек нарушает сложившиеся круговороты веществ, и в этом

проявляется его геологическая сила, разрушительная по отношению к биосфере

на сегодняшний день.

Когда 2 млрд. лет тому назад на Земле появилась жизнь, атмосфера

состояла из вулканических газов. В ней было много углекислого газа и мало

кислорода (если вообще был), и первые организмы были анаэробными. Так как

продукция в среднем превосходила дыхание, за геологическое время в

атмосфере накапливался кислород и уменьшалось содержание углекислого газа.

сжигания больших количеств горючих ископаемых и уменьшения поглотительной

способности «зелёного пояса». Последнее является результатом уменьшения

количества самих зелёных растений, а также связано с тем, что пыль и

загрязняющие частицы в атмосфере отражают поступающие в атмосферу лучи.

В результате антропогенной деятельности степень замкнутости

биогеохимических круговоротов уменьшается. Хотя она довольно высока (для

различных элементов и веществ она не одинакова), но тем не менее не

абсолютна, что и показывает пример возникновения кислородной атмосферы.

Иначе невозможна была бы эволюция (наивысшая степень замкнутости

биогеохимических круговоротов наблюдается в тропических экосистемах –

наиболее древних и консервативных).

Таким образом, следует говорить не об изменении человеком того, что не

должно меняться, а скорее о влиянии человека на скорость и направление

изменений и на расширение их границ, нарушающее правило меры преобразования

природы. Последнее формулируется следующим образом: в ходе эксплуатации

природных систем нельзя превышать некоторые пределы, позволяющие этим

системам сохранять свойства самоподдержания. Нарушение меры как в сторону

увеличения, так и в сторону уменьшения приводит к отрицательным

результатам. Например, избыток вносимых удобрений столь же вреден, сколь и

недостаток. Это чувство меры утеряно современным человеком, считающим, что

в биосфере ему всё позволено.

Надежды на преодоление экологических трудностей связывают, в

частности, с разработкой и введением в эксплуатацию замкнутых

технологических циклов. Создаваемые человеком циклы превращения материалов

считается желательным устраивать так, чтобы они были подобны естественным

циклам круговорота веществ. Тогда одновременно решались бы проблемы

обеспечения человечества невосполнимыми ресурсами и проблема охраны

природной среды от загрязнения, поскольку ныне только 1 – 2% веса природных

ресурсов утилизируется в конечном продукте.

Теоретически замкнутые циклы превращения вещества возможны. Однако

полная и окончательная перестройка индустрии по принципу круговорота

вещества в природе не реальна. Хотя бы временное нарушение замкнутости

технологического цикла практически неизбежно, например, при создании

синтетического материала с новыми, неизвестными природе свойствами. Такое

вещество вначале всесторонне апробируется на практике, и только потом могут

быть разработаны способы его разложения с целью внедрения составных частей

в природные круговороты.


Похожая информация.