В чем достоинства и недостатки шины vlb. Локальная шина VESA Local Bus. Что будем делать с полученным материалом

Локальная шина VLB

Локальная шина стандарта VLB (VESA Local Bus, VESA – Video Equipment Standart Association – Ассоциация стандартов видеооборудования) разработана в 1992 году. Главным недостатком шины VLB является невозможность её использования с процессорами, пришедшими на замену МП 80486 или существующими параллельно с ним (Alpha, PowerPC и др.).

Шины ввода-вывода ISA, MCA, EISA имеют низкую производительность, обусловленную их местом в структуре PC. Современные приложения (особенно графические) требуют существенного повышения пропускной способности, которое могут обеспечить современные процессоры. Одним из решений проблемы повышения пропускной способности было применение в качестве шины подключения периферийных устройств локальной шины процессора 80486. Шину процессора использовали как место подключения встроенной периферии системной платы (контроллер дисков, графического адаптера).

VLB - стандартизованная 32-битная локальная шина, практически представляющая собой сигналы системной шины процессора 486, выведенные на дополнительные разъемы системной платы. Шина сильно ориентирована на 486 процессор, хотя возможно ее использование и с процессорами класса 386. Для процессоров Pentium была принята спецификация 2.0, в которой разрядность шины данных увеличена до 64, но она распространения не получила. Аппаратные преобразователи шины новых процессоров в шину VLB, будучи искусственными "наростами" на шиннной архитектуре, не прижились, и VLB дальнейшего развития не получила.

Конструктивно VLB-слот аналогичен 16-битному обычному MCA-слоту, но является расширением системного слота шины ISA-16, EISA или MCA, располагаясь позади него вблизи от процессора. Из-за ограниченной нагрузочной способности шины процессора больше трех слотов VLB на системной плате не устанавливают. Максимальная тактовая частота шины - 66 МГц, хотя надежнее шина работает на частоте 33 МГц. При этом декларируется пиковая пропускная способность 132 Мбайт/с (33 МГц x 4 байта), но она достигается только внутри пакетного цикла во время передач данных. Реально в пакетном цикле передача 4 x 4 = 16 байт данных требует 5 тактов шины, так что даже в пакетном режиме пропускная способность составляет 105.6 Мбайт/с, а в обычном режиме (такт на фазу адреса и такт на фазу данных) - всего 66 Мбайт/с, хотя это и значительно больше, чем у ISA. Жесткие требования к временным характеристикам процессорной шины при большой нагрузке (в т. ч. и микросхемами внешнего кэша) могут привести к неустойчивой работе: все три VLB-слота могут использоваться только на частоте 40 МГц, при нагруженной системной плате на 50 МГц может работать только один слот. Шина в принципе допускает и применение активных (Bus-Master) адаптеров, но арбитраж запросов возлагается на сами адаптеры. Обычно шина допускает установку не более двух Bus-Master адаптеров, один из которых устанавливается в "Master"- слот.

Шину VLB обычно использовали для подключения графического адаптера и контроллера дисков. Адаптеры локальных сетей для VLB практически не встречаются. Иногда встречаются системные платы, у которых в описании указано, что они имеют встроенный графический и дисковый адаптер с шиной VLB, но самих слотов VLB нет. Это означает, что на плате установлены микросхемы указанных адаптеров, предназначенные для подключения к шине VLB. Такая неявная шина по производительности, естественно, не уступает шине с явными слотами. С точки зрения надежности и совместимости это даже лучше, поскольку проблемы совместимости карт и системных плат для шины VLB стоят особенно остро.

Accelerated Graphics Port (AGP)

Стандарт на AGP (Accelerated Graphics Port - ускоренный графический порт) был разработан фирмой Intel с для того, чтобы не меняя сложившийся стандарт на шину PCI, ускорить ввод/вывод данных в видеокарту и, кроме этого, увеличить производительность компьютера при обработке трехмерных изображений без установки дорогостоящих двухпроцессорных видеокарт с большими объемами как видеопамяти, так и памяти под текстуры, z-буфер и т.п.. Этот стандарт был поддержан большим количеством фирм, входящих в AGP Implementors Forum, организацию, созданную на добровольной основе для внедрения этого стандарта. Поэтому развитие AGP было довольно стремительным. Стартовая версия стандарта - AGP 1.0.

Конструктивное исполнение представляет собой отдельный слот с питанием 3.3 V, напоминающий слот PCI, но на самом деле никак с ним несовместимом. Обычная видеокарта не может быть установлена в этот слот и наооборот.

Скорость передачи данных до 532 Мбайт/с, обусловлена частотой шины AGP до 132 МГц, отсутствием мультиплексирования шины адреса и данных (на PCI по одним и тем же физическим линиям сначала выдается адрес, а потом данные). AGP имеет частоту шины 66 МГц и ту же разрядность и в стандартном режиме (точнее - режим "1x") может пропустить 266 Мбайт/с. Для повышения пропускной способности шины AGP в стандарт заложена возможность передавать данные, используя как передний так и задний фронт синхросигнала - режим 2x. В режиме 2x пропускная способность 532 Мбайт/с. При достижении частоты шины в 100 МГц скорость обмена возрастет до 800 Мбайт/с.

Кроме "классического" способа адресации, как на PCI, в AGP может использоваться режим sideband addressing, называемый "адресацией по боковой полосе". При этом используются специальные, отсутствующие в PCI, сигналы SBA (SideBand Addressing). В отличие от шины PCI на AGP присутствует конвейрная обработка данных.

Основная обработка трехмерных изображений выполняется в основной памяти компьютера как центральным процессором, так и процессором видеокарты. Механизм доступа процессора видеокарты к памяти получил название DIrect Memory Execute (DIME - непосредственное выполнение в памяти). Следует упомянуть, что сейчас не все видеокарты стандарта AGP поддерживают этот механизм. Некоторые карты пока имеют только механизм, аналогичный bus master на шине PCI. Не следует путать этот принцип с UMA, который используется в недорогих видеокартах, размещенных, как правило, на материнской плате. Основные отличия: . Область основной памяти компьютера, которая может использоваться AGP картой (ее также называют "AGP память"), не заменяет память экрана. В

UMA основная память используется как память экрана, а AGP память лишь дополняет ее. . Пропускная способность памяти в UMA видеокарте меньше, чем для шины

PCI. . Для вычислений текстур привлекаются только центральный процессор и процессор видеокарты. . Центральный процессор записывает данные для видеокарты непосредственно в область обычной памяти, доступ к которой получает также и процессор видеокарты. . Выполняются только операции чтения/записи в память. Нет арбитража на шине (AGP порт всегда один) и временных затрат на него

Обычная память (даже SDRAM) существенно дешевле, чем видеопамять для графических карт.

В декабре 1997 года фирма Intel выпустила предварительную версию стандарта AGP 2.0, а в мае 1998 года окончательный вариант. Основные отличия от предыдущей версии: . Скорость передачи может быть увеличена еще в два раза по сравнению с

1.0 - этот режим получил название "4x" - и достигать значения 1064

Мбайт/с. . Скорость передачи адреса в режиме "адресации по боковой полосе" также может быть увеличена еще в два раза. Добавлен механизм "быстрой записи" Fast Write (FW). Основная идея - запись данных/команд управления непосредственно в AGP устройство, минуя промежуточное хранение данных в основной памяти. Для устранения возможных ошибок в стандарт на шину введен новый сигнал WBF# (Write

Buffer Full - буфер записи полон). Если сигнал активен, то режим FW невозможен.

В июле 1998 года Intel выпустила версию 0.9 спецификации на AGP Pro, существенно отличающейся конструктивно от AGP 2.0. Краткая суть отличий в следующем: . Изменен разъем AGP - добавлены выводы по краям существующего разъема для подключения дополнительных цепей питания 12V и 3.3V . Совместимость с AGP 2.0 только снизу вверх - платы с AGP 2.0 можно устанавливать в слот AGP Pro, но не наооборот. . AGP Pro предназначена только для систем с ATX форм-фактором. . Поскольку карте AGP Pro разрешено потребление до 110 Wt (!!), высота элементов на плате (с учетом возможных элементов охлаждения) может достигать 55 мм, поэтому два соседних слота PCI должны оставаться свободными. Кроме этого, два соседних слота PCI могут использоваться платой AGP Pro для своих целей. . С точки зрения схемотехники новая спецификация ничего не добавляет, кроме специальных выводов, сообщающих системе о потреблении платы AGP Pro.

AGP быстро прижился в обыкновенных настольных системах из-за своей дешевизны и скорости, а видеокарты на AGP почти вытеснили обычные PCI- видеокарты.

Локальная шина VESA, или VLB (VESA Local Bus), разработана Ассоциацией стандартов видеоэлектроники (Video Electronics Standart Assotiation, VESA), основанной в начале 1980-х гг. Необходимость создания VLB была вызвана тем, что передача видеоданных по шине ISA осуществлялась слишком медленно. Однако в настоящее время шина VLB не используется.

Локальная шина VLB представляет собой не новое устройство на материнской плате, а, скорее, расширение шины ISA для обмена видеоданными. Обмен информацией с CPU осуществляется под управлением контроллеров, расположенных на картах, устанавливаемых в слот VLB, напрямую в обход стандартной шины ввода/вывода. Шина VLB является 32-разрядной и работает на тактовой частоте процессора. Кроме того, передача данных по этой шине невозможна без использования линий шины ISA, по которым передаются уже известные сигналы адресов и управления.

Согласно спецификации VESA, тактовая частота локальной шины не должна превышать 40 МГц. Для большинства материнских плат, имеющих процессор с тактовой частотой 50 МГц, особых проблем обычно не возникает, причем, как правило, эти материнские платы оборудованы двумя слотами VLB.

Едва карта VLB успела закрепиться на рынке, как появилась уже новая шина PCI (Peripheral Component Interconnect). Она была разработана фирмой Intel для своего нового высокопроизводительного процессора Pentium. Шина РС1, в отличие от EISA и VLB, представляет собой не дальнейшее развитие шины ISA, а совершенно новую шину.

В современных материнских платах тактовая частота шины РС1 задается как половина тактовой частоты системной шины, т. е. при тактовой частоте системной шины 66 МГц шина РС1 будет работать на частоте 33 МГц, при частоте системной шины 100 МГц - 50 МГц.

Основополагающим принципом, положенным в основу шины РС1, является применение так называемых мостов (Bridges), которые осуществляют связь между шиной РС1 и другими шинами (например, PCI to ISA Bridge).

Важной особенностью шины РС1 является то, что в ней реализован принцип Bus Mastering, который подразумевает способность внешнего устройства при пересылке данных управлять шиной (без участия CPU). Во время передачи информации устройство, поддерживающее Bus Mastering, захватывает шину и становится главным. При таком подходе центральный процессор освобождается для выполнения других задач, пока происходит передача данных.

Применительно к устройствам IDE (например, винчестер, CD-ROM) Bus Mastering IDE означает наличие определенных схем на материнской плате, позволяющих осуществлять передачу данных с жесткого диска в обход CPU. Это особенно важно при использовании многозадачных операционных систем типа Windows.

В настоящее время шина РС1 стала стандартом де-факто среди шин ввода/вывода. Поэтому рассмотрим ее архитектуру (рис. 5.3) несколько подробнее.

В чем же секрет победного шествия шины РС1 в мире PC? Ответить можно так.

В шине РС1 используется совершенно отличный от шины ISA способ пе редачи данных. Этот способ, называемый "способом рукопожатия", заключается в том, что в системе определяются два устройства: инициатор (Iniciator) и исполнитель (Target). Когда инициирующее устройство готово к передаче, оно выставляет данные на линии данных и сопровождает их соответствующим сигналом (Indicator Ready), при этом исполняющее (подчиненное) устройство записывает данные в свои регистры и подает сигнал Target Ready, подтверждая запись данных и готовность к приему следующих. Установка всех сигналов, а также чтение/запись данных производятся строго в соответствии с тактовыми импульсами шины, частота которых равна 33 МГц (сигналу CLK).

Основное преимущество PCI-технологии заключается в относительной независимости отдельных компонентов системы. В соответствии с концепцией PCI, передачей пакета данных управляет не CPU, а включенный между ним и шиной PCI мост (Host Bridge Cashe/DRAM Controller). Процессор может продолжать работу и тогда, когда происходит запись данных в RAM (или их считывание) либо при обмене данными между двумя любыми компонентами системы.

В соответствии со спецификацией PCI 1.0 шина PCI- 32-разрядная, а PCI 2.0 64-разрядная. Таким образом, полоса пропускания шины составляет, соответственно, 33 МГц - (32 бит: 8) = 132 Мбайт/с и 33 МГц -

- (64 бит: 8) = 64 Мбайт/с.

Шина PCI универсальна. Поскольку системная шина и шина PCI соединены с помощью главного моста (Host-Bridge), то последняя является самостоятельным устройством и может использоваться независимо от типа CPU.

Рис. 5.3. Архитектура шины PCI

В соответствии со спецификацией РС1 5.0, ширина шины увеличена до 64 разрядов, слоты РС1 имеют дополнительные контакты, на которые подается напряжение 3,3 В. Большинство современных микросхем PC работает при таком напряжении.

Система РС1 использует принцип временного мультиплексирования, т. е. когда для передачи данных и адресов применяются одни и те же линии.

Важным свойством шины РС1 является ее интеллектуальность, т. е. она в состоянии распознавать аппаратные средства и анализировать конфигурации системы в соответствии с технологией Plug&Play, разработанной корпорацией Intel.

Шина MCA

Шина MCA (MicroChannel Architecture) - микроканальная архитектура - была введена в пику конкурентам фирмой IBM для своих компьютеров PS/2 начиная с модели 50 в 1987 году. Обеспечивает быстрый обмен данными между отдельными устройствами, в частности с оперативной памятью. Шина MCA абсолютно несовместима с ISA/EISA и другими адаптерами. Состав управляющих сигналов, протокол и архитектура ориентированы на асинхронное функционирование шины и процессора, что снимает проблемы согласования скоростей процессора и периферийных устройств. Адаптеры MCA широко используют Bus-Mastering, все запросы идут через устройство CACP (Central Arbitration Control Point). Архитектура позволяет эффективно и автоматически конфигурировать все устройства программным путем (в MCA PS/2 нет ни одного переключателя).

При всей прогрессивности архитектуры (относительно ISA) шина MCA не пользуется популярностью из-за узости круга производителей MCA-устройств и полной их несовместимости с массовыми ISA-системами. Однако MCA еще находит применение в мощных файл-серверах, где требуется обеспечение высоконадежного производительного ввода-вывода.

Локальная шина VLB

Локальная шина стандарта VLB (VESA Local Bus, VESA - Video Equipment Standart Association - Ассоциация стандартов видеооборудования) разработана в 1992 году. Главным недостатком шины VLB является невозможность её использования с процессорами, пришедшими на замену МП 80486 или существующими параллельно с ним (Alpha, PowerPC и др.).

Шины ввода-вывода ISA, MCA, EISA имеют низкую производительность, обусловленную их местом в структуре PC. Современные приложения (особенно графические) требуют существенного повышения пропускной способности, которое могут обеспечить современные процессоры. Одним из решений проблемы повышения пропускной способности было применение в качестве шины подключения периферийных устройств локальной шины процессора 80486. Шину процессора использовали как место подключения встроенной периферии системной платы (контроллер дисков, графического адаптера).

VLB - стандартизованная 32-битная локальная шина, практически представляющая собой сигналы системной шины процессора 486, выведенные на дополнительные разъемы системной платы. Шина сильно ориентирована на 486 процессор, хотя возможно ее использование и с процессорами класса 386. Для процессоров Pentium была принята спецификация 2.0, в которой разрядность шины данных увеличена до 64, но она распространения не получила. Аппаратные преобразователи шины новых процессоров в шину VLB, будучи искусственными "наростами" на шиннной архитектуре, не прижились, и VLB дальнейшего развития не получила.

Конструктивно VLB-слот аналогичен 16-битному обычному MCA-слоту, но является расширением системного слота шины ISA-16, EISA или MCA, располагаясь позади него вблизи от процессора. Из-за ограниченной нагрузочной способности шины процессора больше трех слотов VLB на системной плате не устанавливают. Максимальная тактовая частота шины - 66 МГц, хотя надежнее шина работает на частоте 33 МГц. При этом декларируется пиковая пропускная способность 132 Мбайт/с (33 МГц x 4 байта), но она достигается только внутри пакетного цикла во время передач данных. Реально в пакетном цикле передача 4 x 4 = 16 байт данных требует 5 тактов шины, так что даже в пакетном режиме пропускная способность составляет 105.6 Мбайт/с, а в обычном режиме (такт на фазу адреса и такт на фазу данных) - всего 66 Мбайт/с, хотя это и значительно больше, чем у ISA. Жесткие требования к временным характеристикам процессорной шины при большой нагрузке (в т. ч. и микросхемами внешнего кэша) могут привести к неустойчивой работе: все три VLB-слота могут использоваться только на частоте 40 МГц, при нагруженной системной плате на 50 МГц может работать только один слот. Шина в принципе допускает и применение активных (Bus-Master) адаптеров, но арбитраж запросов возлагается на сами адаптеры. Обычно шина допускает установку не более двух Bus-Master адаптеров, один из которых устанавливается в "Master"- слот.

Шину VLB обычно использовали для подключения графического адаптера и контроллера дисков. Адаптеры локальных сетей для VLB практически не встречаются. Иногда встречаются системные платы, у которых в описании указано, что они имеют встроенный графический и дисковый адаптер с шиной VLB, но самих слотов VLB нет. Это означает, что на плате установлены микросхемы указанных адаптеров, предназначенные для подключения к шине VLB.

Такая неявная шина по производительности, естественно, не уступает шине с явными слотами. С точки зрения надежности и совместимости это даже лучше, поскольку проблемы совместимости карт и системных плат для шины VLB стоят особенно остро.

Внутримашинный системный интерфейс - система связи и сопряжения узлов и блоков ЭВМ между собой представляет совокупность электрических линий связи (проводов), схем сопряжения с компонентами компьютера, протоколов (алгоритмов) передачи и преобразования сигналов.

Существуют два варианта организации внутримашинного интерфейса:

многосвязный интерфейс, где каждый блок ПК связан с прочими блоками своими локальными проводами; многосвязный интерфейс применяется, как правило, только в простейших бытовых ПК;

односвязный интерфейс, где все блоки ПК связаны друг с другом через общую или системную шину.

В подавляющем большинстве современных ПК в качестве системного интерфейса используется системная шина. Функциональными характеристиками системной шины являются: количество обслуживаемых ею устройств и ее пропускная способность, т.е. максимально возможная скорость передачи информации. Пропускная способность шины зависит от ее разрядности (есть шины 8-, 16-, 32- и 64-разрядные) и тактовой частоты, на которой шина работает.

В качестве системной шины в разных ПК использовались и могут использоваться:

шины расширений шины общего назначения, позволяющие подключать большое число самых разнообразных устройств;

локальные шины специализирующиеся на обслуживании небольшого количества устройств определенного класса.

Сравнительные технические характеристики некоторых шин приведены в таблице 5.1.

Таблица 5.1 - Основные характеристики шин

Шины расширений.

1. Шина Multibus1 имеет две модификации: PC/XT bus (Persona) Computer eXtended Technology - ПК с расширенной технологией) и PC/AT bus (PC Advanced Technology - ПК с усовершенствованной технологией).

2. Шина PC/XT bus - 8-разрядная шина данных и 20-разрядная шина адреса, рассчитанная на тактовую частоту 4,77 МГц, имеет 4 линии для аппаратных прерываний и 4 канала для прямого доступа в память (каналы DMA - Direct Memory Access). Шина адреса ограничивала адресное пространство микропроцессора величиной 1 Мбайт. Используется с МП 8086,8088.

3. Шина PC/AT bus -16-разрядная шина данных и 24-разрядная шина адреса, рабочая тактовая частота до 8 МГц, но может использоваться и МП с тактовой частотой 16 МГц, так как контроллер шины может делить частоту пополам; имеет 7 линий для аппаратных прерываний и 4 канала DMA.

4. Шина ISA (Industry Standard Architecture - архитектура промышленного стандарта) - 16-разрядная шина данных и 24-разрядная шина адреса, рабочая тактовая частота 8 МГц, но может использоваться и МП с тактовой частотой 50 МГц (коэффициент деления увеличен). По сравнению с шинами PC/XT и PC/AT увеличено количество линий аппаратных прерываний с 7 до 15 и каналов прямого доступа к памяти DMA с 7 до 11. Благодаря 24-разрядной шине адреса адресное пространство увеличилось с 1 до 16 Мбайт. Теоретическая пропускная способность шины данных равна 16 Мбайт/с, реально около 4-5 Мбайт/с, ввиду ряда особенностей ее использования.

5. Шина EISA (Extended ISA) - 32-разрядная шина данных и 32-разрядная шина адреса, создана в 1989 г. Адресное пространство шины 4 Гбайта, пропускная способность 33 Мбайт/с, причем скорость обмена по каналу МП - КЭШ - ОП определяется параметрами микросхем памяти, увеличено число разъемов расширений (теоретически может подключаться до 15 устройств, практически - до 10). Улучшена система прерываний, шина EISA обеспечивает автоматическое конфигурирование системы и управление DMA, полностью совместима с шиной ISA (есть разъем для подключения ISA), шина поддерживает многопроцессорную архитектуру вычислительных систем. Шина EISA применяется в скоростных ПК, сетевых серверах и рабочих станциях.

6. Шина МСА (Micro Channel Architecture) -32-разрядная шина, созданная фирмой IBM в 1987 г. для машин PS/2, пропускная способность 76 Мбайт/с, рабочая частота 10-20 МГц. По прочим характеристикам близка к шине EISA, но не совместима ни с ISA, ни с EISA. Поскольку ЭВМ PS/2 не получили широкого распространения, в первую очередь ввиду отсутствия наработанного обилия прикладных программ, шина МСА также используется не очень широко .

Локальные шины VLB и PCI

Два основных стандарта универсальных локальных шин - VLB и PCI.

1. Шина VLB (VESA Local Bus -локальная шина VESA) - называют шиной VESA. Шина VLB, no существу, является расширением внутренней шины МП для связи с видеоадаптером и реже с винчестером, платами Multimedia, сетевым адаптером. Разрядность шины - 32 бита (возможен 64-разрядный вариант). Реальная скорость передачи данных по VLB - 80 Мбайт/с (теоретически достижимая -132 Мбайт/с).

Недостатки шины:

– рассчитана на работу с МП 80386, 80486, не адаптирована для процессоров Pentium, Pentium Pro, Power PC;

– жесткая зависимость от тактовой частоты МП (каждая шина VLB рассчитана только на конкретную частоту);

– малое количество подключаемых устройств - к шине VLB (только четыре устройства);

– отсутствует арбитраж шины - могут быть конфликты между подключаемыми устройствами.

2. Шина PCI. (Peripheral Component Interconnect - соединение внешних устройств). Шина PCI является более универсальной, чем VLB, имеет свой адаптер, позволяющий ей настраиваться на работу с любым МП, она позволяет подключать 10 устройств самой разной конфигурации с возможностью автоконфигурирования, имеет свой "арбитраж", средства управления передачей данных.

Разрядность PCI - 32 бита с возможностью расширения до 64 бит, при частоте шины 33 МГц теоретическая пропускная способность 132 Мбайт/с, а в 64-битовом варианте -263 Мбайт/с (реальная вдвое ниже).

Варианты конфигурации систем с шинами VLB и PCI показаны на рисунке 5.1 и рисунке 5.2 соответсвенно. Использование в ПК шин VLB и PCI возможно только при наличии соответствующей VLB- или PCI-материнской платы.

Рисунок 5.1 - Конфигурация системы с шиной VLB

Рисунок 5.2 - Конфигурация системы с шиной PCI

Для подключения шины PCI к другим шинам применяются специальные аппаратные средства - мосты шины PCI (PCI Bridge). Главный мост (Host Bridge) используется для подключения PCI к системной шине (шине процессора или процессоров). Одноранговый мост (Peer-to-Peer Bridge) используется для соединения двух шин PCI. Две и более шины PCI применяются в серверных платформах - дополнительные шины PCI позволяют увеличить количество подключаемых устройств. Таким образом, совокупность мостов, расположенных вокруг шины PCI, выполняет маршрутизацию (routing) обращений по всем связанным шинам. В общем случае считается, что устройство с конкретным адресом может присутствовать только на одной из шин данного компьютера, а на каком именно, "знают" запрограммированные мосты.

Основные возможности шины.

1. Синхронный 32-х или 64-х разрядный обмен данными. При этом для уменьшения числа контактов используется мультиплексирование, то есть адрес и данные передаются по одним и тем же линиям.

2. Поддержка 5V и 3.3V логики. Разъемы для 5 и 3.3V плат различаются расположением ключей (cуществуют универсальные платы, поддерживающие оба напряжения, но частота 66MHz поддерживается только 3.3V логикой).

3. Частота работы шины 33MHz или 66MHz (в версии 2.1) позволяет обеспечить широкий диапазон пропускных способностей (с использованием пакетного режима):

– 132 МВ/с при 32-bit/33MHz;

– 264 MB/с при 32-bit/66MHz;

– 264 MB/с при 64-bit/33MHz;

– 528 МВ/с при 64-bit/66MHz.

4. Для работы шины на частоте 66MHz необходимо, чтобы все периферийные устройства работали на этой частоте.

5. Полная поддержка multiply bus master (например, несколько контроллеров жестких дисков могут одновременно работать на шине).

6. Поддержка write-back и write-through кэша.

7. Автоматическое конфигурирование карт расширения при включении питания.

8. Спецификация шины позволяет комбинировать до восьми функций на одной карте (например, видео + звук и т.д.).

9. Шина позволяет устанавливать до 5 слотов расширения, однако возможно использование моста PCI-PCI для увеличения количества карт расширения.

10. PCI-устройства оборудованы таймером, который используется для определения максимального промежутка времени, в течении которого устройство может занимать шину.

11. Шина поддерживает метод передачи данных, называемый "linear burst" (метод линейных пакетов). Этот метод предполагает, что пакет информации считывается (или записывается) в непрерывное пространство памяти, то есть адрес автоматически увеличивается для следующего байта. Естественным образом при этом увеличивается скорость передачи собственно данных за счет уменьшения числа передаваемых адресов.

Спецификация шины PCI определяет три типа ресурсов - два обычных (диапазон памяти и диапазон ввода/вывода) и configuration space - "конфигурационное пространство". Автоконфигурирование устройств (выбор адресов, запросов прерываний) поддерживается средствами BIOS и ориентировано на технологию Microsoft/Intel Plug and Play (PnP) PC architecture .

Стандарт PCI определяет для каждого слота конфигурационное пространство размером до 256 восьмибитных регистров, не приписанных ни к пространству памяти, ни к пространству ввода/вывода. Доступ к ним осуществляется по специальным циклам шины Configuration Read и Configuration Write, вырабатываемым контроллером при обращении процессора к регистрам контроллера шины PCI, расположенным в его пространстве ввода/вывода. Дополнительная информация о шине PCI приведено в приложении Е.

Интерфейс PCI Express (3GIO).

Аббревиатура 3GIO расшифровывается как «3-е поколение шины ввода-вывода»(Third Generation Input/Output Interconnection) .

Масштабируемость производительности достигается через повышение частоты и добавление линий к шине. PCI Express призвана обеспечить высокую пропускную способность на контакт с низким количеством служебной информации и низкими задержками. Поддерживаются несколько виртуальных каналов на один физический.

Система адресации полностью совместима со спецификацией PCI, что позволяет подключать устройства PCI к новой шине. Без изменений остался механизм автоматического конфигурирования устройств (Plug-and-Play). Данные пересылаются пакетами по 8 или 10 бит (в последнем случае два бита предназначены для поддержки механизма контроля четности и исправления ошибок).

Спецификация интерфейса PCI Express предусматривает несколько уровней взаимодействия и протоколов:

– физический;

– данных (Data Link);

– транзакций (транспортный);

– приложений и драйверов;

– конфигурационный.

Физической основой PCI Express являются последовательные низковольтные дифференциальные линии связи, по одной паре для передачи и приема данных. Масштабируемость шины достигается кратным (1, 2, 4, 8, 16, 32) увеличением числа линий. Между участниками обмена данными по шине PCI Express устанавливается выделенный канал связи, ширина которого и тактовая частота обговариваются устройствами в процессе инициализации канала. Здесь же происходит представление данных в формате 8 или 10 бит. При необходимости 2 бита используются для контроля за целостностью данных. Тем самым реализуется концепция обмена данными «точка - точка».

Теоретически полоса пропускания самого узкого канала достигает 2,5 Гбит/с в каждом направлении.

Система адресации и команд включает три стандартных поля, совместимых с интерфейсом РСI (область памяти, адрес ввода-вывода, инициализации и конфигурирования), а также дополнительное поле сообщений (Message).

Интерфейсная шина AGP

Выделенная для потока видеоданных интерфейсную шину - AGP (Accelerated Graphics Port - ускоренный графический порт) (рисунок 5.3) .

Рисунок 5.3– Структурная схема графического ускорителя с AGP

Преимуществом новой шины стала ее высокая пропускная способность. Если шина ISA позволяла передавать до 5,5 Мбайт/с, VLB -до 130 Мбайт/с (однако при этом чрезмерно загружала центральный процессор), а PCI до 133 Мбайт/с, то шина AGP теоретически имеет пиковую пропускную способность до 2132 Мбайт/с (в режиме передачи 32-разрядных слов).

Интерфейс AGP обеспечивает прямое соединение между графической подсистемой и оперативной памятью. Таким образом, выполняются требования вывода ЗD-графики в режиме реального времени и, кроме того, более эффективно используется память буфера кадра, тем самым увеличивается скорость обработки 3D-графики. Шина AGP соединяет графическую подсистему с контроллером системной памяти, разделяя доступ с центральным процессором компьютера. Через AGP возможно подключение графических плат.

Основными особенности AGP, влияющими на производительность:

Шина способна передавать два (AGP2x), четыре (AGP4x) или восемь (AGP8x) блоков данных за один цикл;

Устранена мультиплексированность линий адреса и данных (в PCI для удешевления материнских плат адрес и данные передаются по одним и тем же линиям);

Конвейеризация операций чтения/записи позволяет устранить влияние задержек в модулях памяти на скорость выполнения этих операций.

Шина AGP работает в двух основных режимах - DIME (Direct Memory Execute) и DMA (Direct Memory Access). В режиме DMA основной памятью считается память на карте. Текстуры могут храниться в системной памяти, но перед использованием копируются в локальную память видеокарты. Обмен ведется большими последовательными пакетами данных.

В режиме Execute локальная и системная память для видеокарты логически равноправны. Текстуры не копируются в локальную память, а выбираются непосредственно из системной памяти. Таким образом, приходится передавать сравнительно небольшие случайно расположенные куски. Поскольку системная память требуется и другим устройствам, она выделяется динамически, блоками по 4 Кбайт. Поэтому для обеспечения приемлемого быстродействия предусмотрен специальный механизм, отображающий последовательные адреса на реальные адреса блоков в системной памяти.

Шина AGP поддерживает все стандартные операции шины PCI, поэтому поток данных по ней можно представить как смесь чередующихся AGP и РСI-операций чтения/записи. Операции шины AGP являются раздельными (split). Это означает, что запрос на проведение операции отделен от собственно пересылки данных.

Новая спецификация - AGP Pro. Основное отличие этого интерфейса заключается в возможности управления энергопитанием. С этой целью в разъем AGP Pro добавлены новые линии.

Интерфейс AGP Pro предназначен для графических станций. Двукратное увеличение пропускной способности достигнуто за счет повышения тактовой частоты шины до 66 МГц и применения нового уровня сигналов 0,8 В (в AGP 2.0 использовался уровень 1,5 В). Тем самым при сохранении основных параметров интерфейса повышена пропускная способность шины до 2132 Мбайт/с.

Повышенная пропускная способность порта AGP обеспечивается следующими тремя факторами:

– конвейеризацией операций обращения к памяти;

– сдвоенными передачами данных;

– демультиплексированием шин адреса и данных.

Интерфейс SCSI

Системный интерфейс малых компьютеров SCSI (Small Computer System Interface) был стандартизован ANSI в 1986 году. Интерфейс предназначен для соединения устройств различных классов - памяти прямого и последовательного доступа, CD-ROM, оптических дисков однократной и многократной записи, устройств автоматической смены носителей информации, принтеров, сканеров, коммуникационных устройств и процессоров. Устройством SCSI - SCSI Device - называется как хост-адаптер, связывающий шину SCSI с какой-либо внутренней шиной компьютера, так и контроллер целевого устройства - target controller, с помощью которого оно подключается к шине SCSI. К одному контроллеру может подключаться несколько периферийных устройств, по отношению к которым контроллер может быть как внутренним, так и внешним.

По физической реализации интерфейс является 8-битной параллельной шиной с тактовой частотой 5 МГц. Шина допускает подключение до 8 устройств, скорость передачи данных в первоначальной версии достигала 5 Мбайт/с.

Спецификация - SCSI-2, расширяющая возможности шины как в количественных, так и в качественных показателях. Тактовая частота шины Fast SCSI-2 достигает 10 МГц, а Ultra SCSI-2 - 20 МГц. Разрядность данных может быть увеличена до 16 бит - эта версия называется Wide SCSI-2 (широкий), а 8-битную версию назвали Narrow (узкий). 16-битная шина позволяет увеличивать число устройств до 16. Стандарт SCSI-2 определяет и 32-битную версию интерфейса. Комбинации тактовой частоты и разрядности обеспечивают широкий диапазон пропускной способности, достигающей 40 Мбайт/с для реальной версии Ultra Wide SCSI-2.

Спецификация SCSI-2 определяет систему команд, которая включает набор базовых команд для всех периферийных устройств, и специфических команд для периферии различных классов.

Спецификация - SCSI-3 - дальнейшее развитие стандарта, направленное на увеличение количества подключаемых устройств. SCSI-3 существует в виде широкого спектра документов, определяющих отдельные стороны интерфейса.

Современные устройства с интерфейсом SCSI выпускаются в соответствии со стандартом SCSI-2 или SCSI-3. Стандарт SCSI-3 предполагает различные варианты протокольного и физического уровня интерфейса, включающие как параллельные, так и последовательные шины.

Для параллельных шин скорость передачи данных определяется частотой передач, измеряемой в миллионах передач за секунду - MT/sec (Mega Transfer/sec) и разрядностью.

Скорость передачи данных для различных вариантов параллельной шины приведена в таблице 5.2.

Таблица 5.2 - Скорость передачи данных по параллельной шине SCSI

Последовательный интерфейс FCAL (Fibre Channel Arbitrated Loop - арбитражное кольцо волоконного канала) по реализации ближе к интерфейсам локальных сетей. Этот интерфейс, известный также и как Fibre Channel SCSI, может иметь как электрическую (коаксиальный кабель), так и оптоволоконную реализацию. В обоих случаях частота 800 МГц обеспечивает скорость передачи данных 100 Мбайт/с. Медный кабель допускает длину шины до 30 м, оптический - до 10 км. Здесь используется иной протокольный и физический уровни интерфейса и имеется возможность подключения к шине до 126 устройств (а не 8 или 16, как для параллельного интерфейса). Двухпортовые устройства могут достигать пиковой скорости обмена до 200 Мбайт/с.

Физический интерфейс.

Физически 8-битный интерфейс SCSI представляет собой шину, состоящую из 25 сигнальных цепей. Для обеспечения помехозащищенности каждая сигнальная цепь имеет свой отдельный обратный провод. Каждое устройство SCSI, подключенное к шине, должно иметь свой уникальный адрес, назначаемый при конфигурировании. Для 8-битной шины диапазон значений адреса 0-7, для 16-битной - 0-15. Адрес задается предварительной установкой переключателей или джамперов, для хост-адаптера возможно и программное конфигурирование. Дополнительная информация представлена в приложении Ж.

Интерфейс HyperTransport

Высокоскоростная шина ввода-вывода HyperTransport (HT) предназначена для использования в компьютерных системах, прежде всего в качестве внутренней локальной шины. В сравнении с шиной PCI интерфейс HyperTransport позволяет снизить число проводников на системной плате, устранить задержки, связанные с монополизацией шины устройствами с низкой производительностью, уменьшить энергопотребление и повысить пропускную способность.

Шина HyperTransport организована на различных уровнях:

На физическом уровне шина представлена линиями данных,
управления, тактовыми, а также контроллерами и стандартными электрическими сигналами;

На уровне передачи данных определяется порядок инициализации и конфигурирования устройств, установления и прекращения сеанса связи, циклического контроля адекватности данных, выделения пакетов для передачи данных;

На уровне протокола определены команды выделения виртуальных каналов связи, правила управления потоком данных;

На уровне транзакций команды протокола конкретизированы в управляющие сигналы, например чтения или записи;

На уровне сессии определены правила управления энергопотреблением и прочие команды общего характера.

Физические устройства в рамках интерфейса HyperTransport подразделяются на несколько типов:

Cave («пещера») - оконечное устройство на двунаправленном канале связи;

Tunnel («туннель») - устройство на двунаправленном канале связи, установленное «на проходе» (но не мост);

Bridge («мост») - устройство на двунаправленных каналах связи, один из которых считается главным и связывает устройство с контроллером шины (Host), а другие соединяют с прочими устройствами.

Топологию совокупности устройств на шине HyperTransport можно построить в виде цепочки или дерева. Фирма AMD предлагает сторонним производителям готовые схемы с поддержкой шины Hyper Transport: туннель «HT - AGP» (AMD-8151), хаб каналов ввода-вывода (AMD-8111) и туннель «HT - PCI-X» (AMD-8131). Таким образом обеспечивается совместимость с прочими, в том числе морально устаревшими, интерфейсами и плавный переход на новую шину. Что касается схемотехнической организации шины HyperTransport, то надо отметить ее масштабируемость в зависимости от решаемых задач. В минимальной конфигурации (ширина канала 2 бит, на каждый бит требуется две физические линии) потребуется 24 контакта (8 для данных + 4 для тактовых сигналов + 4 для линий управления + 2 сигнальных + 4 заземления + 1 питания + 1 сброса), в максимальной конфигурации (ширина канала 32 бит) речь идет уже о 197 выводах. Для сравнения укажем, что спецификация PCI 2.1 предусматривает 84 вывода, a PCI-X - 150 выводов.

Физически технология HyperTransport основыванется на улучшенной версии низковольтных дифференциальных сигналов (Low Voltage Differential Signaling, LVDS ). Для всех линий (данных, управления, тактовых) используются шины с дифференциальным сопротивлением 100 Ом. Уровень сигнала составляет 1,2 В (в отличие от 2,5 В, установленных спецификацией IEEE LVDS). Благодаря этому длина шины может достигать 24 дюйма (около 61 см) при полосе пропускания на одной линии до 800 Мбит/с. Необходимо заметить, что спецификация HyperTransport предусматривает разделение «восходящих» (Upstream) и «нисходящих» (Downstream) потоков данных (асинхронность). Такой подход обеспечивает возможность существенного увеличения, тактовых частот по сравнению с существующими архитектурами, поскольку каждый сигнал LVDS функционирует в пределах своей физической линии. Кроме того, пакет, объединяющий адреса, команды и данные, всегда кратен 32 бит. Поэтому обеспечивается его безошибочная передача по масштабируемым каналам шириной от 2 до 32 бит. Это позволяет применять единую технологию HyperTransport для соединения потребителей ресурсов шины различной производительности: процессор, оперативная память, видеоконтроллер, низкоскоростные устройства ввода-вывода, используя в каждом случае минимально необходимое число линий. Пиковая пропускная способность соединения Hyper Transport достигает 12,8 Гбайт/с (по 6,4 Гбайт/с на нисходящий и восходящий каналы шириной 32 бит при частоте 800 МГц и передаче данных по фронту и спаду сигнала). Для сравнения укажем, что пиковая пропускная способность системной шины (200 МГц) процессора AMD Athlon составляет 2,128 Гбайт/с. Важной особенностью технологии HyperTransport является совместимость с устройствами PCI на уровне протоколов.

Интерфейс USB

Шина USB (Universal Serial Bus– универсальная последовательная шина) является промышленным стандартом расширения архитектуры персональных компьютеров (РС), ориентированным на интеграцию с телефонией и устройствами бытовой электроники.

Архитектура USB определяется критериями:

– легко реализуемое расширение периферии РС;

– дешевое решение, поддерживающее скорость передачи до 12 Мбит/с (версия 1.0) и до 480 Мбит/с (версия 2.0);

– полная поддержка в реальном времени передачи аудио- и видеоданных;

– гибкость протокола смешанной передачи, изохронных данных и асинхронных сообщений;

– интеграция с выпускаемыми устройствами;

– доступность в РС всех конфигураций и размеров;

– создание новых классов устройств, расширяющих РС;

– простота кабельной системы и подключений;

– скрытие подробностей подключения от конечного пользователя;

– самоидентифицирующиеся ПУ, автоматическая связь устройств с драйверами и конфигурирование;

– возможность динамического подключения ПУ и конфигурирования.

С середины 1996 года выпускаются РС со встроенным контроллером USB, реализуемым чипсетом.

Таблица 5.3 - Схема цоколевки

Таблица 5.4 - Названия и функциональные назначения выводов


Рисунок 5.4 - Топология шины USB

В вершине этой пирамиды, в корневом узле, находится хост-устройство , а все остальные узлы являются функциональными устройствами (функциями ) или соединителями (хабами ).

Система USB состоит из трех основных частей:

– USB хост-устройство;

– USB разветвитель (хаб);

– USB устройство (функция).

USB хост-устройство (устройство – хозяин интерфейса) – это главное устройство в любой USB системе, которое организует все передачи данных и команд по шине интерфейса .

Интерфейс USB в компьютерной системе множественного доступа реализуется хост-контроллером, который является комбинацией аппаратных средств и программного обеспечения.

Хост-контроллер находится в корневом узле главной системы (на материнской плате) компьютера, и обеспечивает, как правило, две точки присоединения.

Основные функции хост-контроллера:

– определение подключения и удаления USB устройств;

– управление потоком команд между корневым узлом и USB устройством;

Что такое локальная шина?

В данном разделе мы рассмотрим вопросы, связанные с использованием современных системных локальных шин для персональных компьютеров (ПК или, по английски, PC), дадим их сравнительную характеристик и перейдем к проблемам использования шины PCI, так именно по данная шина занимает лидирующее положение на рынке настольных ПК.

Прежде, чем начать обзор шин для персональных компьютеров, необходимо сказать несколько слов о том, что представляет собой системная шина, и для чего она нужна в компьютере. Шина, в самом простом случае, есть множество проводников для соединения различных компонентов микрокомпьютера в единую систему таким образом, чтобы можно было согласовать их работу. Основной обязанностью системной шины является передача информации между базовым микропроцессором и остальными электронными компонентами компьютера. По этой шине осуществляется не только передача информации, но и адресация устройств, а также обмен специальными служебными сигналами. Таким образом, системную шину можно представить как совокупность сигнальных линий, объединенных по их назначению:

  • Control lines (управление)
  • Address lines (адреса)
  • Data lines (данные)

Для того, чтобы описать примерную работу шины, возьмем шину обычного PC, состоящую минимум из линий адреса, данных и линий управления/строба. Самое простое решение, которое здесь можно использовать - это программируемый ввод-вывод. Линии управления используются для синхронизации передачи данных, путем генерирования последовательности импульсов. Возможны две схемы управления, например, раздельные линии управления чтением и записью, либо линия стробирования STROBE и линия чтения - записи в соответствующем состоянии (высокий уровень - для одного сигнала, низкий - для другого).

Шины для PC имеют тенденцию, когда используются раздельные линии управления чтением и записью (фактически 2 такие линии используются для доступа к памяти, а 2 дополнительных линии - для осуществления ввода- вывода). В этом случае центральный процессор (ЦП) посылает данные на периферийные устройства, подключенные к шине. ЦП устанавливает стробирующий сигнал по линии ввода - вывода. Этот импульс показывает, что предшествующий адрес на линии адреса правильный, а периферия может начать чтение с шины данных. Кроме перечисленных выше сигналов имеются также и другие сигналы управления, присутствующие на реальной системной шине.

Обзор локальных шин ПК

Существует множество системных шин, в том числе и локальных, для PC и других типов компьютеров. Перечислим основные их них:

  • S-100
  • S-100 / IEEE696
  • Nubus
  • Multibus-II
  • VL-Bus
  • Futurebus+
  • и ряд других шин.

Начнем по порядку, с шины S-100. Эта шина была создана для 8-разрядных микропроцессоров и различных промышленных приложений. Типичные ее характеристики были такие:

  • Размеры: 134 мм x 254 мм, 100 выводов
  • Разъем: 50 выводов на каждой стороне платы
  • Нерегулируемое напряжение питания: +8В, +16В.

В свое время, шина S-100 была очень популярна для широкого диапазона периферийных плат, она входила в состав плат памяти, устройств последовательного и параллельного интерфейсов, плат контроллеров гибких магнитных дисков, видео-плат, плат музыкальных синтезаторов и т.д. S-100 обеспечивала 16 линий данных, 16 линий адреса (при этом максимальное адресное пространство составляло 64Кбайт), 3 линии питания, 8 линий для прерываний и 39 управляющих линий. Эта шина использовалась для микропроцессоров Intel 8080, Zilog Z-80 и Motorola 6500 и 6800. Некоторые фирмы создали на базе S-100 свои стандарты подобной шины.

Одним из таких примеров может служить стандарт шины S-100/IEEE696, которой разрабатывался в 1983 году. Полученная шина имела следующие характеристики:

  • Дополнительные 8 разрядов адреса позволили адресовать до 16 Мбайтов памяти (таким образом, всего получилось 24 линии адреса).
  • Поддержка 16 - разрядных микропроцессоров путем добавления еще двух сигналов sixteen request (SXTRO, 58 линия) и sixteen acknowledge (SIXTN, 60 линия).
  • Линия 12 была зарезервирована для сигнала немаскируемого прерывания (NMI).

Полная спецификация этой шины включает до 100 сигналов. Рабочая частота при этом достигает 10 МГц. Шина S-100 и ее модификации нашли применение при разработках небольших промышленных приложений. Основными достоинствами этой шины являются низкая цена и поддержка шины большим числом промышленных разработчиков.

У компьютеров IBM PC AT и IBM PC XT системная шина была предназначена для одновременной передачи только 8 разрядов данных, так как используемый в компьютерах микропроцессор i8088 имел 8 линий данных. Кроме этого, системная шина включала 20 адресных линий, которые ограничивали адресное пространство пределом в 1 Мбайт. Для работы с внешними устройствами в этой шине были предусмотрены также 4 линии аппаратных прерываний и 4 линии для требования внешними устройствами прямого доступа в память (DМА - Direct Memory Access). Для подключения плат расширения использовались специальные 62-контактные разъемы. Заметим, что системная шина и микропроцессор синхронизировались от одного тактового генератора с частотой 4,77 МГц. Таким образом, теоретически скорость передачи данных могла достигать более 4.5 Мбайт/с. В компьютерах PC AT, использующих микропроцессор i80286, впервые стала применяться новая системная шина ISA (Industry Standard Аrchitecture), полностью реализующая возможности упомянутого микропроцессора. Количество адресных линий было увеличено на четыре, а данных - на восемь. Таким образом, можно было передавать параллельно уже 16 разрядов данных, а благодаря 24 адресным линиям напрямую обращаться к 16 Мбайтам системной памяти. Количество линий аппаратных прерываний в этой шине было увеличено с 7 до 15, а каналов DMA - с 4 до 7. Надо отметить, что новая системная шина ISA полностью включала в себя возможности старой 8-разрядной шины, то есть все устройства, используемые в PC XT, могли без проблем применяться и в PC AT 286. Системные платы с шиной ISA позволили выполнять синхронизацию работы самой шины и микропроцессора разными тактовыми частота ми, за счет чего устройства, выполненные на платах расширения, могли работать медленнее, чем базовый микропроцессор. Это стало особенно актуальным, когда тактовая частота процессоров превысила 10-12 МГц. Теперь системная шина ISA работает асинхронно на частоте 8 МГц; таким образом, теоретически максимальная скорость передачи может достигать 16 Мбайт/с. Подводя итог по шине ISA для IBM PC XT, можно выделить следующие основные ее черты:

  • 20 адресных линий (A0 - A19)
  • 8 линий данных (двунаправленных)
  • Максимальная пропускная способность 1.2 Мбайт/сек
  • 6 линий запроса прерывания (IRQ2 - IRQ7)
  • 3 линии DMA
  • Рабочая частота шины 4.77 МГц

Шина ISA для IBM PC AT имеет следующие параметры:

  • 16 линий данных
  • Максимально адресуемая память - до 16 Мбайт (224)
  • Добавлены дополнительные 5 линий IRQ (тактируемые по фронту)
  • Частичная поддержка множества мастеров шины путем введения дополнительных сигналов
  • Пропускная способность 5.3 Мбайт/сек
  • Рабочая частота шины 8 МГц

С появлением новых микропроцессоров, таких как i80386 и i486, стало очевидно, что одним из вполне преодолимых препятствий на пути повышения производительности компьютеров с этими микропроцессорами является системная шина типа ISA. Дело в том, что возможности этой шины для построения высокопроизводительных систем следующего поколения были практически исчерпаны. Новая системная шина должна была обеспечить наибольший возможный объем адресуемой памяти, 32-разрядную передачу данных, в том числе и в режиме DMA, улучшенную систему прерываний и арбитраж DMA, автоматическую конфигурацию системы и плат расширения. Такой шиной для IBM PC-совместимых компьютеров стала EISA (Extended Industry Slandard Architecture). Заметим, что системные платы с шиной EISA первоначально были ориентированы на вполне конкретную область применения новой архитектуры. А именно, на компьютеры, оснащенные высокоскоростными подсистемами внешней памяти на жестких магнитных дисках с буферной кэш-памятью. Такие компьютеры до сих пор используются в основном в качестве мощных файл-серверов или рабочих станций. В EISA-разъем на системной плате компьютера, помимо, разумеется, специальных EISA-плат, может вставляться либо 8-, либо 16-разрядная плата расширения, предназначенная для обыкновенной PC AT с шиной ISA. Это обеспечивается поистине гениальным, но простым конструктивным решением. EISA-разъемы имеют два ряда контактов, один из которых (верхний) использует сигналы шины ISA, а второй (нижний) - соответственно EISA. Контакты в соединителях EISA расположены так, что рядом с каждым сигнальным контактом находится контакт "земля". Благодаря этому сводится к минимуму вероятность генерации электромагнитных помех, а также уменьшается восприимчивость к таким помехам. Шина EISA позволяет адресовать 4-Гбайтное адресное пространство, доступное микропроцессорам i80386/486. Однако доступ к этому пространству могут иметь не только центральный процессор, но и платы управляющих устройств типа bus master - главного абонента (то есть устройства, способные управлять передачей данных по шине), а также устройства, организующие режим DMA. Стандарт EISA поддерживает многопроцессорную архитектуру для "интеллектуальных" устройств (плат), оснащенных собственными микропроцессорами. Поэтому данные, например, от контроллеров жестких дисков, графических контроллеров и контроллеров сети могут обрабатываться независимо, не загружая при этом основной процессор. Теоретически максимальная скорость передачи по шине в так называемом пакетном режиме (burst mode) может достигать 33 Мбайт/с, В обычном (стандартном) режиме скорость передачи по шине EISA не превосходит, разумеется, известных значений для ISA. На шине EISA предусматривается метод централизованного управления, организованный через специальное устройство - системный арбитр. Таким образом поддерживается использование ведущих устройств на шине, однако предусматривается также предоставление шины запрашивающим устройствам по циклическому принципу. Как и для шины ISA, в системе EISA имеется 7 каналов DMA. Выполнение DMA-функций полностью совместимо с аналогичными операциями на ISA- шине, хотя они могут происходить и несколько быстрее. Контроллеры DMA имеют возможность поддерживать 8-, 16- и 32-разрядные режимы передачи данных. В общем случае возможно выполнение одного из четырех циклов обмена между устройством DMA и памятью системы. Это - ISA - сoвмecтимые циклы, использующие для передачи данных 8 тактов шины; циклы типа A, исполняемые за 6 тактов шины; цикпы типа B, исполняемые за 4 такта шины, и циклы типа C (или burst), в которых передача данных происходит за один такт шины. Типы циклов А, В и С поддерживаются 8-, 16- и 32-разрядными устройствами, причем возможно автоматическое изменение размера (ширины) данных при передаче в не соответствующую размеру память. Большинство ISA-совместимых устройств, использующих DMA, могут работать почти в 2 раза быстрее, если они будут запрограммированы на применение циклов А или В, а не стандартных (и сравнительно медленных) ISA-циклов. Такая производительность достигается только путем улучшения арбитража шины, а не в ущерб совместимости с ISA. Приоритеты DMA в системе могут быть либо "вращающимися" (переменными), либо жестко установленными. Линии прерывания шины ISA, по которым запросы прерывания передаются в виде перепадов уровней напряжения (фронтов сигналов), сильно подвержены импульсным помехам. Поэтому в дополнение к привычным сигналам прерываний на шине ISA, активным только по своему фронту, в системе EISA предусмотрены также сигналы прерываний, активные по уровню. Причем для каждого прерывания выбор той или иной схемы активности может быть запрограммирован заранее. Собственно прерывания, активные по фронту, сохранены в EISA только для совместимости со "старыми" адаптерами ISA, обслуживание запросов на прерывание которых производит схема, чувствительная к фронту сигнала. Понятно, что прерывания, активные по уровню, менее подвержены шумам и помехам, нежели обычные. К тому же (теоретически) по одной и той же физической линии можно передавать бесконечно большое число уровней прерывания. Таким образом, одна линия прерывания может использоваться для нескольких запросов. Для компьютеров с шиной EISA предусмотрено автоматическое конфигурирование системы. Каждый изготовитель плат расширения для компьютеров с шиной EISA поставляет вместе с этими платами и специальные файлы конфигурации. Информация из этих файлов используется на этапе подготовки системы к работе, которая заключается в разделении ресурсов компьютера между отдельными платами. Для "старых" плат адаптеров пользователь должен сам подобрать правильное положение DIP-переключателей и перемычек, однако сервисная программа на EISA-компьютерах позволяет отображать установленные положения соответствующих переключателей на экране монитора и дает некоторые рекомендации по правильной их установке. Помимо этого, в архитектуре EISA предусматривается выделение определенных групп адресов ввода - вывода для конкретных слотов шины - каждому разъему расширения отводится адресный диапазон 4Кбайта. Это также позволяет избежать конфликтов между отдельными платами EISA. Кроме того, шина по-прежнему тактируется частотой около 8 МГц, а скорость передачи увеличивается в основном благодаря увеличению разрядности шины данных. Итак, шина EISA имеет следующие параметры:

  • 32 - разрядный режим передачи
  • Максимальная пропускная способность - до 33 Мбайт/сек
  • 32 - разрядная адресация памяти, что обеспечивает до 4 Гбайт адресуемого пространства памяти
  • Множество мастеров шин
  • Программируемые прерывания по уровню или по фронту синхросигнала
  • Автоматическая конфигурация плат

Шина Nubus. Шина ISA, тяжелое наследие прошлого IBM-совместимык компьютеров, имеет своего двойника в мире Apple. Это - шина Nubus, древнейшая из ныне живущих шин. Она обладает примерно теми же характеристиками, что и ISA.

В мире существует - более двух с половиной миллионов систем с шиной Multibus-II. Так что эта "экзотика" определяет лицо целых отраслей компьютерной индустрии и, между прочим, кормит около двух сотен фирм-разработчиков. Шина Multibus-II была разработана в 1985 г. как развитие широко применяемого в промышленной автоматике стандарта Multibus. Multibus-II является 32-разрядной и может работать со скоростью управляющего процессора - вплоть до достижения пропускной способности 80 Мбайт/с. Шина Multibus в почете у военных - они любят все надежное, серьезное, единообразное. Даже сегодня, в дни тотальной миниатюризации, контроллеры Multibus в промышленном исполнении имеют размер 9х9 дюймов - наверное, для солидности. В отличие от других рассматриваемых здесь шин, Multibus обладает возможностью передачи сообщений (т.н. "message passing") между различными управляющими устройствами. Механизм "message passing", доведенный до абсолюта в транспьютерах фирмы Inmos и процессорах семейства TMS 320С40 фирмы Texas Instruments, дозволяет организовывать "интеллектуальное" взаимодействие между процессорами и контроллерами. Это особенно важно при создании многопроцессорных систем и построении сложных комплексов промышленной электроники. Не случайно стандарт Multibus-II по сей день "царит" среди индустриальных систем. Механизм "message passing", доведенный до абсолюта в транспьютерах фирмы Inmos и процессорах семейства TMS 320С40 фирмы Texas Instruments, позволяет организовывать "интеллектуальное" взаимодействие между процессорами и контроллерами.

А теперь о шине MC. Фирма IBM, движимая не столько недовольством шиной ISA, сколько горечью потери лидерства на рынке PC ее имени, в 1987г. предприняла попытку изменить положение и выпустила систему PS/2. В компьютерах PS/2 все было по-новому, в частности принципиально новой была системная шина MicroChannel (или МСА). Достаточно быстрая (до 20 МГц, до 76 Мбайт/с) и широкая (32 бита), шина MicroChannel содержала рад удачных архитектурных решений и вполне могла бы бороться за лидерство среди системных шин. Шина MicroChannel обладает следующими особенностями:

  • 8/16/32 - разрядные линии передачи данных
  • Прерывания по уровню сигнала (в отличие от ISA, где прерывания - по фронту синхросигнала)
  • 24 или 32 адресных линии (адресация до 4 Гбайт памяти)
  • Автоматическая конфигурация плат (на основе информации в ROM этих плат)
  • Асинхронный протокол передачи данных

К сожалению, исходная посылка IBM - создать что-то новое и несовместимое с другими для последующего завоевания рынка, погубила MicroChannel. Шина EISA, сохранившая 100-процентную преемственность с ISA, легко вытеснила MicroChannel с массового рынка и лишила всяких надежд на будущее. А что IBM? А IBМ не унывает и параллельно с производством рабочих станций с архитектурой РСI трудится над разработкой 64-разрядного стандарта MicroChannel.

Шина Sbus. Вплоть до последних лет два сектора рынка - массовые ПК и мощные рабочие станции - существовали изолированно друг от друга. Производители рабочих станций, не помышляя об унификации, изобретали свои велосипеды как в области процессоров и архитектур. так и в разработках системных шин. В итоге каждое из лидирующих семейств рабочих станций - будь то Silicon Graphics, HP или Intergraph, имеет собственную системную шину. Более других повезло в этом смысле фирме Sun. Ee шина Sbus, разработанная в 1989 г. исключительно для внутреннего употребления, пришлась "ко двору" - и почти 150 фирм стали использовать ее в своих изделиях. Работая с частотой до 25 МГц, 32-разрядная Sbus к настоящему моменту утратила большинство конкурентных преимуществ, однако по-прежнему неплохо смотрится в рабочих станциях и серверах. Среди других шин Sbus слывет интеллектуалкой - она умеет автоматически транслировать виртуальные адреса в физические, распознавать ошибки при передаче данных и инициировать повторы. Фирма Sun собирается продолжать использование Sbus - в том числе и - в будущих портативных компьютерах, подобных Voyager.

Шина Mbus. Если Sbus появилась на свет в фирме Sun, а затем начала распространение по миру, то шина Mbus проделала обратный путь. Созданная в 1990 г. усилиями ряда фирм-производителей станции SPARC, шина Mbus приглянулась фирме Sun и стала использоваться в ее разработках. Mbus - 64-разрядная высокоскоростная шина. Mbus допускает совместное использование с другими шинами, имеет портативные варианты исполнения (есть адаптеры Mbus размером 2х3 дюйма) и предусматривает возможности передачи сообщений. Вероятно, в ближайшие годы Mbus будет лидером среди системных шин 64-разрядных станций.

Системный интерфейс малых ЭВМ SCSI (Small Computer System Interface) регламентирован стандартом IEC 9316, который унифицирует основные уровни для базовых типов периферийных устройств, главным образом накопителей магнитных дисков, АЦПУ, а также возможности расширения функций посредством специальных кодов и полей. В интерфейсе используется логическая адресация всех блоков данных и возможность считывания с устройств прямого доступа информации о числе имеющихся блоков. Максимальная скорость передачи данных составляет до 4 Мбайт/сек, длина кабеля до 6 м при использовании обычных приемопередатчиков и до 25 м дифференциальных приемопередатчиков. Архитектура интерфейса предусматривает несколько видов организации взаимодействия эадатчиков (инициаторов) и исполнителей (приемников) с использованием необязательного распределенного арбитража. Время арбитража не превышает 10 мкс. Дополнительные возможности такие: два варианта физической реализации, использование четности, синхронная передача данных и др. Команды разделены на обязательные (М), расширенные (E), необязательные (0) и уникальные (U). Устройства выполняют все обязательные команды для данного типа устройств команды, а также ряд других команд. Кроме того. в стандарте определены расширенные команды дли устройств прямого доступа, постоянные команды для всех типов устройств, уникальные команды для жестких дисков, ленточных накопителей, принтеров, оптических дисков, процессоров, байты состояния всех типов устройств. Максимальное число подключенных устройств - 8. Каждое устройство идентифицируется соответствующим разрядом, размещаемым на линии данных. SCSI-2 является одной из "старых" периферийных шин, используемых, с доработками, и поныне. Спецификация SCSI разрабатывалась американским институтом национальных стандартов ANSI. Чуть позже она расширилась до SCSI-2 и SCSI-3. Типичная SCSI обладает следующими характеристиками:

  • 8 - разрядная параллельная шина ввода-вывода
  • Каждый адаптер может поддерживать до 7 устройств
  • Поддерживаются различные устройства (CD-ROM, ленточные накопители, сканеры, магнитооптические устройства и т. д.)
  • Пропускная способность 4 Мбайт/сек
  • Поддержка синхронной и асинхронной схем передачи данных

SCSI-2 расширяет возможности основного стандарта. Она имеет максимальную пропускную способность до 10 Мбайт/сек при 8 - разрядной шине и до 40 Мбайт/сек - при 32-разрядной шине. Существует несколько спецификаций приложений для SCSI:

  • Narrow SCSI 8-разрядная версия SCSI
  • Wide SCSI 16- и 32-разрядные версии SCSI-2
  • Fast SCSI SCSI-2, которая поддерживает скорость передачи до 10 Мбайт/сек

Разработчики компьютеров, системные платы которых основывались на микропроцессорах i80386/486, стали использовать раздельные шины для памяти и устройств ввода-вывода. Это позволило максимально задействовать возможности оперативной памяти, так как именно в этом случае память может работать с наивысшей для нее скоростью. Тем не менее при таком подходе вся система не может обеспечить достаточной производительности, так как устройства, подключенные через разъемы расширения, не могут достичь скорости обмена, сравнимой с процессором. В основном это касается работы с контроллерами накопителей и видеоадаптерами. Для решения данной проблемы стали использовать так называемые локальные (local или mezzanine) шины, которые непосредственно связывают процессор с контроллерами периферийных устройств. В последнее время появились две стандартные локальные шины: VL-bus (или VLB), предложенная ассоциацией VESA (Video Electronics Standards Association), и PCI (Peripheral Component Interconnect), разработанная фирмой Intel. Обе эти шины, предназначенные, вообще говоря, для одного и того же - для увеличения быстродействия компьютера, позволяют таким периферийным устройствам, как видеоадаптеры и контроллеры накопителей, работать с тактовой частотой до 33 МГц. Обе эти шины используют разъемы типа МСА. На этом, впрочем, их сходство и заканчивается, поскольку требуемая цель достигается различными средствами. Шина VL-Bus является расширением шины процессора 486. Выводы процессора подключаются непосредственно к контактам разъема шины. В некоторых платах адаптеров VL-Bus имеются буферы для хранения данных на время ожидания готовности периферийного устройства. Таким образом, схемная реализация VL-bus оказывается более, дешевой и простой, чем, например, PCI. Спецификация VESA, в частности, предусматривает, что к шине, которая является локальной 32-разрядной шиной системного микропроцессора, может подключаться до трех периферийных устройств. В качестве таких устройств в настоящее время выступают контроллеры накопителей, видеоадаптеры и сетевые платы. Конструктивно VL-bus выглядит как короткий соединитель типа МСА (112 контактов), установленный, например, рядом с разъемами расширения ISA или EISA. При этом 32 линии используются для передачи данных и 30 - для передачи адреса. Максимальная скорость передачи по шине VL-bus теоретически может составлять около 130 Мбайт/с. Заметим, что в настоящее время шина VL-bus представляет из себя сравнительно недорогое дополнение для компьютеров с шиной ISA, причем с обеспечением обратной совместимости. Появилась версия 2.0 шинной архитектуры VL-Bus, в которую введены такие новшества, как мультиплексированный 64-разрядный канал данных, буферизация сигналов для работы с быстродействующими системными платами и более высокая максимальная тактовая частота - 50 МГц. Количество разъемов расширения увеличится до трех разъемов на 40 МГц и до двух на 50 МГц. Ожидаемая скорость передачи теоретически должна возрасти до 400 Мбайт/с.

Стандарт IEEE 896.1-1988, названный Futurebus+, претендует на роль шины завтрашнего дня для систем массового применения. Стандарт Futurebus+ был разработан ассоциацией VITA (VFEA International Trade Association) в 1988 г. специально для высокоскоростных систем передачи информации. Требования к Futurebus+ были составлены таким образом, чтобы преодолеть все ограничения, присущие VME в телекоммуникационных системах. Ширина Futurebus+ - до 256 бит, максимальная скорость - 3,2 Гбайт/с, рабочая частота ограничивается лишь возможностями управляющего процессора. Многие считают: чем больше битов в шине, тем она удобнее. Вовсе нет. Контроллер широкой шины никогда не будет таким маленьким и удобным, как ISA или IDE. Поэтому для сложных высокоскоростных шин, помимо упомянутых выше "мостов", применяются так называемые mezzanine-bus - более простые и "узкие" шины, сопрягаемые с основной без использования дополнительной управляющей электроники. Для Futurebus+ такими mezzanine-bus являются Sbus и PCI. К стандарту Futurebus+ присматриваются сегодня многие создатели рабочих станций. В эпоху "информационных супермагистралей" разница между коммутационной станцией глобальной сети и файл-сервером крупной корпорации не столь велика, как может показаться. Не исключено, что вскоре появятся настольные системы, использующие Futurebus+ в качестве системной шины. ВМФ США уже объявил Futurebus+ основным стандартом для своих будущих разработок.

В калейдоскопе новых слов и понятий как-то поблекли и исчезли с горизонта многие популярные прежде термины. Среди них - стандарт VME (Versa Module Eurocard). Разработанный в 1981 г. консорциумом авторитетнейших электронных фирм - Motorola, Philips, Thompson, Signetics и др., стандарт VME во многом опередил свое время, полноценная 32-разрядная шина с высокой пропускной способностью (до 40 Мбайт/с) и рекордными возможностями расширения (до 21 слота без дополнительных расширителей) пришлась по душе как создателям рабочих станций, так и заказчикам специализированной электроники - военным. ученым, медикам. Итог - 4500 типов электронных изделий, базирующихся на VME, 280 фирм-разработчиков, десятки тысяч находящихся- в эксплуатации рабочих станций. Благодаря стандарту VME появились и такие конструктивные находки как 64-штырьковый разъем, европлата размера 3U, и, конечно, VME - плата 6U (размером 6,3х9.2 дюйма). Как стандарт системной шины, VME имеет некоторые преимущества даже перед РСI:

  • VME содержит 7 линий прерываний, РСI - всего 4;
  • VME поддерживает 21 устройство на шине, РСI - до 10;
  • 64-разрядный VME существует с 1989 г.

Можно с уверенностью назвать ряд приложений, в которых VME-системы будут доминировать еще не один год:

  • промышленная электроника;
  • аппаратура военного применения;
  • медицинские и научные приборы;
  • тестовое и контрольное оборудование;
  • автоматизированные системы управления;
  • "встроенные" системы;
  • телекоммуникационное оборудование.

Локальная шина PCI

Спецификация шины РСI обладает несколькими преимуществами перед основной версией VL-Bus. В соответствии со спецификацией РСI к шине могут подключаться до 10 устройств. Это, однако, не означает использования такого же числа разъемов расширения - ограничение относится к общему числу компонентов, в том числе расположенных и на системной плате. Поскольку каждая плата расширения РСI может разделяться между двумя периферийными устройствами, то уменьшается общее число устанавливаемых разъемов. Шина РСI может использовать 124-контактный разъем (32-разрядная) или 188-контактный разъем (64-разрядная передача данных), при этом теоретически возможная скорость обмена составляет соответственно 132 и 264 Мбайт/с. На системных платах устанавливаются обычно не более трех разъемов.

Предполагается, что стандарт PCI лучше соответствует растущим потребностям в скоростной обработке данных на настольных машинах, поскольку превосходит стандарт VL-Bus по сложности, гибкости и функциональной насыщенности. А если учесть, что его убежденными сторонниками являются такие гиганты, как IBM, Compaq, NEC и Dell, то он становится серьезным противником даже для "хорошо окопавшейся" шины VL-Bus. Windows принесла в мир ПК полноцветную графику. Процессор 486 выполняет пересылки данных по 32-разрядной шине, тактируемой частотой 33 МГц. Как только выдаваемый им мощный поток графических данных попадает на шину ISA, он упирается в "узкое горло". Эта шина создана 10 лет назад и работает на частоте всего лишь 8 МГц, а ее разрядность равна 16. По мере того как в прикладных программах начинают все шире использоваться многоцветная графика, "живое" видео и рендеринг трехмерных изображений, шина ISA отстает все больше и больше. Чтобы решить эту проблему, разработчикам систем и периферийных устройств пришлось предусмотреть другой способ связи с узлами машины, требующими наиболее интенсивного обмена данными. Подключив графический адаптер и некоторые периферийные устройства непосредственно к процессору, они открыли широкий и быстрый канал обмена между теми узлами, которым скорость важнее всего. Для этого были разработаны различные стандарты локальной шины, в том числе и VL-Bus. Стандартная локальная шина обеспечивает единообразный способ подключения устройств к быстродействующей шине процессора и тем самым позволяет устранить "узкие места" во всех новых ПК. Шина РСI поддерживает 32-разрядный канал передачи данных между процессором и периферийными устройствами, работает на высокой тактовой частоте (33 МГц) и имеет максимальную пропускную способность 120 Мбайт/с. Кроме того, шина PCI в некоторой степени обеспечивает обратную совместимость с существующими периферийными устройствами, рассчитанными на шину ISA. В стандарте PCI предусмотрены контроллер и акселератор, образующие локальную шину, не связанную с шиной процeccopа. Иcпользуeтся несколько способов повышения пропускной способности. Один из ниx - блочная лередача последовательных данных. Если данные не являются последовательными, требуется дополнительное время на установку адреса каждого их элемента. Шина РСI создает между ЦП и периферийными устройствами некоторый промежуточный уровень. В результате получается процессорно-независимая шина, как ее называет Intel. Ее легко подключить к самым различным ЦП, в их числе Pentium корпорации Intel, Alpha корпорации DEC, MIPS R4400 и PowerPC фирм Motorola, Apple и IBM. Для производителей систем это означает снижение затрат на разработку, так как с процессорами разного типа можно использовать одни и те же элементы и устройства. Стандарт РС1 предусматривает обширный список дополнительных функций. К ним относится автоматическая конфигурация периферийных устройств, позволяющая пользователю устанавливать новые устройства без особых проблем.

РСI - это шина для производителей компьютеров: сложное, элегантное, универсальное техническое решение, позволяющее разработчикам быстро и качественно создавать различные системы. Кроме того, это шина для тех, кто на мощных серверах использует большие дисковые массивы, строит многозадачные комплексы на основе NT или OS/2 или собирает высокопроизводительные рабочие станции для "перемалывания" больших объемов графики, видео и данных других типов. На смену ISA пришли РСI и EISA, а работа с устройствами, управляемыми ISA (например, последовательными портами и стримерами) выполняется посредством специальных шинных преобразователей - "мостов"; (bridges). Так, фирма Intel производит мост PCI/ISA - это микросхема i82387. Шина РСI процессорно-независима и используется сегодня с самыми разными процессорами - i486 и Pentium, PowerPC и DEC, Alpha и др. Она поддерживает целый спектр периферийных устройств и обладает средствами управления передачей данных (что освобождает процессор от рутинной возни с трафиком). Нет нужды говорить, что все обмены по шине буферизованы. PCI легко совместима с большинством известных шин. Разработаны и реализованы в виде стандартных микросхем многочисленные "мосты"; PCI/ISA, PCI/EISA, РРС/РСI и другие. Многие производители ПК практикуют также слоты двойного назначения - например, PCI/ISA, позволяющие на одно и то же место устанавливать устройства ввода-вывода в различных стандартах. По части организации групповых операций обмена РСI пошла дальше VLB - в ней групповой режим реализован как для чтения, так и для записи. Максимальная пропускная способность составляет 132 Мбайта/сек. Таким образом, в ближайшее будущее шина PCI имеет неплохие перспективы.

Общие характеристики всех перечисленных локальных шин наглядно представлены в виде следующей таблицы:

Параметры ISA EISA VL-Bus PCI Futurebus SCSI Nubus MCA M-II Sbus Mbus VME
Рабочая частота (МГц) 8 8-33 до 33 до 33 CPU 5-10 10 10-20 CPU 20-25 40-50 CPU
Пропускная способность (МБайт/сек) 2 8 80 50 80 10 20 20 64 80 200 40
Burst Mode (МБайт/сек) 4 33 132 132 3.2 ГБайт/сек 10 (20-fast) 40 76 80 - 320 320 (64-bit)
Разрядность (битов) 16 32 32(64) 32(64) 32-256 32 32 16;32 32 64 64 32;64
Макс. кол-во подключ. устройств 6 15(10) 4 10 14 7-15 - 15 21 - 6 21

Литература

  • An Investigation of bus systems in the PC, Stephen Mulcahy, 9234076 Grad Dip Comp Eng.
  • PCI Local Bus Specification. Revision 2.0, 1993, PCI SIG
  • PCI BIOS Specification. Revision 1.0, 1992, Intel Corporation
  • PCI Multimedia Design Guide. Revision 1.0, 1994, PCI MWG
  • S -100 in commercial applications, Micro&Microsyst, vol.10 No2, March 86
  • Inside EISA, Byte, November 1989, p. 417 - 425
  • Intel Support Web-site
  • Интерфейсы средств вычислительной техники,энциклопедический справочник, А. А. Мячев, М.:Радио и связь, 1993
  • КомпьютерПресс, No1, М.: 1994
  • PC World, No12, М.: 1993