Ткань. Общие принципы организации тканей. Развитие тканей в онтогенезе (филогенезе). Регенерация тканей. Регенерация тканей план понятие о регенерации Что такое регенерация тканей

Способность живых организмов к регенерации органов является одной из многих таинственных загадок биологии, которую человек уже давно пытается разгадать. Еще в 2005 году всем известный журнал Science опубликовал список 25 самых важных проблем науки, в которую входит проблема раскрытия загадки регенерации органов .

Пётр Гаряев. ‹Совершенно секретно» Биология молодости

Стволовые клетки – основа регенерации

В настоящее время ученым так и не удалось до конца понять - почему же одни живеые существа, лишаясь конечности, могут быстро ее восстановить, а другие лишены такой возможности. Весь на определенном этапе развития организм знает, как это сделать, но этот этап очень короткий – срок, начинающийся и сразу заканчивающийся, когда эмбрион только начинает развиваться. В настоящее время ученые всего мира пытаются найти ответ на вопрос: можно ли разбудить это «ценное» воспоминание в мозгу взрослого человека и заставить его снова работать.

Некоторые специалисты в сфере регенеративной медицины считают, что данную функцию регенерации можно восстановить с помощью . Данные клетки в организме взрослого человека содержатся в очень маленьком количестве и располагаются в нижнем отделе позвоночника рядом с коренным узлом. Это уникальные клетки, с их помощью зарождался, а затем строился и развивался организм будущего маленького человечка.

Первые восемь клеток, образовавшиеся в результате зачатия, оплодотворения яйцеклетки сперматозоидом – это первородные стволовые клетки. Ученые выяснили, чтобы активизировать воспроизводство данных стволовых клеток нужно запустить особое вихревое поле (Мерка-ба) . Именно оно будет стимулировать активное производство стволовых клеток. При активном производстве клеток организм человека начнет регенерацию. Это и есть заветная мечта ученых регенеративной медицины.

Повреждение спинного мозга, любого органа или конечности делают из здорового активного человека инвалида на всю оставшуюся жизнь. Полностью разгадав загадку регенерации органов, ученые смогут научиться помогать таким людям, «отращивая» новые здоровые органы. Также процесс регенерации способен значительно увеличить продолжительность жизни.

Регенерация органов и тканей: как это происходит?

Целительная иммунная система саламандры

Пытаясь раскрыть тайну , ученые пристально наблюдали за организмами, которые обладают данными способностями: головастики , ящерицы , моллюски , все ракообразные , амфибии , креветки .

Особенно из данной группы ученые выделяют саламандру . Данная особь способна регенерировать, и не один раз, головной и спинной , сердце, конечности и хвост. Именно данное земноводное специалисты в области регенеративной медицины всего мира считают идеальным образцом способности регенерации.

Данный процесс у саламандры очень точный. Она может восстановить конечность полностью, но если потеряна лишь часть, то восстанавливается именно та потерянная часть. В настоящий момент точно не известно сколько же раз саламандра может восстанавливаться. Стоит отметить, что отращенная в очередной раз конечность без патологий и отклонений. Секрет данного земноводного – иммунная система , именно она помогает восстановлению органов.

Ученые очень внимательно изучают данную иммунную систему на предмет копирования методики восстановления, но уже для человеческого организма. Но пока копирование не получается, несмотря на большое количество исследований саламандры. Лишь ученые Австралийского института регенеративной медицины заявляют, что, скорее всего им удалось обнаружить основополагающий фактор способности регенерирования саламандры.

  • Они утверждают, что в основе данной способности лежат клетки иммунной системы, которые предназначены для переваривания умерших клеток, грибков, бактерий, которые отторгнул организм. Ученые долго экспериментировали на саламандрах, живущих в лаборатории. Они искусственно очищали организм земноводных, тем самым «выключая» регенеративные способности. В результате на ранах просто образовывался рубец аналогичный человеческому рубцу, который появляется после серьезных травм;
  • Специалисты считают, что именно клетки иммунной системы создают особые химические вещества, которые создают основу регенеративного процесса. Скорее всего, химическое вещество воспроизводится непосредственно на поврежденном участке и начинает его активно восстанавливать;
  • Недавно австралийские ученые заявили, что готовят долгосрочное исследование иммунной системы человека и саламандры. Благодаря современной аппаратуре и высокому профессионализму ученых, скорее всего, в ближайшие годы будет выявлено, что именно помогает быстрой регенерации земноводных;
  • Также, попутно может быть сделано открытие в сфере косметологии, протезирования и трансплантологии относительно эффективного избавления от рубцов. Данная проблема также много лет не может решиться;
  • К сожалению, ни одно не обладает способностью к регенерации органов. Способность человека к регенерации можно активировать, лишь добавив в организм определенные специальные компоненты.

Исследования регенерации у млекопитающих

Однако есть специалисты, которые после долгих исследований и экспериментов, утверждают, что млекопитающие могут регенерировать кончик пальца. Данные выводы они сделали, работая с мышами . Но, степень регенерации очень ограничена. Если сравнивать лапку мыши и палец человека, то возможно отрастить утраченный фрагмент, не доходящий до места кутикулы. Если даже на миллиметр больше, то процесс регенерации уже невозможен.

Есть данные, что сообщество ученых их Японии и США смогли «разбудить» стволовые клетки мыши и отрастили большую часть конечности, равную длине среднего человеческого пальца. Они выяснили, что стволовые клетки расположены по всему телу млекопитаемого, они размножаются и становятся теми клетками, которые в данный момент наиболее нужны организму для благополучного функционирования.

Заключение

Ученые всего мира настойчиво работают, чтобы узнать с помощью чего организм человека может регенерировать органы. Если все же специалисты научатся «будить» стволовые клетки, то это будет одно из самых величайших открытий человечества. Данные знания сильно повлияют на работу абсолютно всех областей клинической медицины, позволив «заменять», в прямом смысле этого слова, негодные, мертвые органы на здоровые и эффективно восстанавливать поврежденные ткани.

В настоящее время все исследования и эксперименты проходят с обязательным участием млекопитающих и земноводных.

Регенерация (тканей)

воспроизведение утерянных органов и тканей животными. Говоря вообще, можно принять, что чем выше организовано животное, тем слабее у него регенеративная способность. Простейшие восстановляют (регенерируют) любую часть своего тела, но при условии, чтобы регенерирующая часть клетки имела хотя бы часть ядра (макронуклеса); отрезки же, лишенные ядра, не регенерируют. Надо думать, что означенное явление стоит в связи с важной ролью клеточного ядра при усвоении пищи. Часть клетки, лишенная ядра, теряет способность усваивать пищевые вещества, а, следовательно, и расти. Точно так же кишечнополостные и многие черви одинаково обладают способностью восстановлять оба конца своего тела. Гидра и др. восстановляют как нижний слепой конец своего тела, так равно и верхний, несущий ротовое отверстие и щупальца. Турбеллярии, немертины, равно и более высоко организованные черви - как обыкновенный земляной червяк, восстановляют не только задний конец, но и передний, т. е. голову со всеми ее органами. Морские звезды и змеевики, у которых все пять лучей, составляющих их тело, построены одинаково, обладают высокой регенеративной способностью: каждый из лучей обладает способностью восстановлять недостающие. У более высоко стоящих форм, напр. у ракообразных, паукообразных, моллюсков, а также у многих позвоночных - регенеративная способность более ограничена и сводится лишь к восстановлению некоторых придатков тела. Раки и пауки - восстановляют оторванные конечности, моллюски тоже некоторые оторванные части (напр. сифоны), рыбы - непарные плавни, амфибии и ящерицы - оторванные конечности и хвост. Есть указание, что восстановление ноги наблюдалось у чижа, но это не проверено и вообще можно принять, что птицы и млекопитающие восстановляют при поранении лишь ткани, а не органы. Всего легче восстановляется мышечная и нервная ткань. Вообще же многие ткани как бы находятся в постоянном нормальном процессе Р.: так, роговой покров позвоночных отшелушивается на поверхности и образуется заново в глубине вследствие размножения более глубоко лежащих клеток. Иногда Р. делается нормальным периодическим явлением при известных отправлениях. Во время родов у высших млекопитающих каждый раз отпадает значительная часть или даже вся (у человека) слизистая оболочка матки и потом снова регенерирует. Однако означенное правило относительно ослабления регенеративной способности по мере поднятия вверх по животной лестнице при детальном его применении требует многих исключений: рыбы, напр., стоят ниже амфибий, а у них боковые плавни, соответствующие конечностям амфибий, не регенерируют, тогда как конечности амфибий регенерируют. Самый процесс Р. в большинстве случаев происходит таким образом, что утерянные тканевые элементы образуются на счет соответствующих тканей оставшихся частей: эпителий - на счет эпителия, соединительная ткань на счет соединительной ткани и т. д. Если же регенерируют целые органы, то в большинстве случаев они образуются на счет элементов того же эмбрионального пласта, на счет коего они развиваются у зародыша, причем при Р. органа наблюдается некоторое, хотя далеко не полное сходство с развитием его в зародышевом состоянии. Хотя в этом отношении существуют также исключения: так, хрусталик глаза амфибий развивается, как и у других позвоночных, из кожного (эктодермического слоя), а регенерирует при искусственном удалении на счет элементов радужины; но в других случаях, напр. у низших червей (турбелларий), наблюдалось и такое явление, что одна ткань (у турбеллярий паренхиматозная ткань, выполняющая промежутки между органами) восстановляет все недостающие органы, играя роль индифферентной регенеративной ткани. При Р. иногда происходит численное увеличение восстанавливающихся органов: так, давно было замечено, что при Р. конечности амфибий число пальцев иногда бывает более пяти, а ящерица образует иногда два хвоста вместо одного. Торнье показал, что если ящерице срезать хвост наискось, так, чтобы при этом был задет не один, а 2 или 3 позвонка, то у нее вырастает не один, а 2-3 хвоста, т. е. каждый пораненный позвонок образует хвост. Точно так же если отрезать лапку у тритона и зашить ранку лишь в ее средней части, так что вместо одной ранки образуется две, - то вырастают две лапки. Если срезать два правых и два левых пальца, а срединный не трогать, то с каждой стороны его вырастут не по 2, а по 4 пальца и получится 8-палая конечность. Иногда восстановляется орган не на том месте, где он был прежде, или даже такой орган, которого животное не имело. Такое явление названо гетероморфозом. Так, полипы вместо слепого конца (ноги) иногда восстанавливают другой рот с своим венчиком щупалец, и получается полип с двумя ртами и двумя венчиками щупалец. Восстановление переднего конца вместо заднего наблюдалось у турбеллярий. Точно так же у ракообразных, у которых сложные глаза сидят на стебельках, наблюдалось, что в случае удаления глаза вырастал усик с характерными чувствительными волосками и бывший прежде глазной нерв врастал в этот усик. В некоторых случаях подобного гетероморфоза, может быть, нужно видеть как бы возвращение к первобытному состоянию органа у предков данного животного. Во многих случаях регенеративная способность стоит в связи с способностью отбрасывать в момент опасности органы вследствие сильного конвульсивного сокращения мышц: рак отбрасывает таким образом клешни, будучи за них схвачен, ящерица - хвост, моллюск - сифон, а голотурии при раздражении - выбрасывают части кишечника и его придатков через задний проход или перешнуровываются на отдельные участки. Это явление получило название аутотомии и естественно сопровождается Р. утерянных частей.

В. М. Ш.


Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. - С.-Пб.: Брокгауз-Ефрон . 1890-1907 .

Смотреть что такое "Регенерация (тканей)" в других словарях:

    РЕГЕНЕРАЦИЯ - РЕГЕНЕРАЦИЯ, процесс образования нового, органа или ткани на месте удаленного тем или иным образом участка организма. Очень часто Р. определяется как процесс восстановления утраченного, т.. е. образование органа, подобного удаленному. Такое… … Большая медицинская энциклопедия

    - (поздн. лат., от лат. re опять, вновь, и genus, eris род, поколение). Возрождение, возобновление, восстановление того, что было разрушено. В фигуральном значении: перемена к лучшему. Словарь иностранных слов, вошедших в состав русского языка.… … Словарь иностранных слов русского языка

    - (от позднелат. regenerate возрождение, возобновление), восстановление организмом утраченных или повреждённых органов и тканей (собственно Р.), а также восстановление целого организма из его части (соматический эмбриогенез, вегетативное… … Биологический энциклопедический словарь

    Регенерация - * рэгенерацыя * regeneration 1. Образование отдельных тканей, органов или целых организмов в результате морфогенеза (см.) в культуре изолированных тканей () или клеток (). 2. Восстановление утраченных или поврежденных органов и тканей либо целого … Генетика. Энциклопедический словарь

    - (от позднелат. regeneratio возрождение возобновление), в биологии восстановление организмом утраченных или поврежденных органов и тканей, а также восстановление целого организма из его части. В большей степени присуща растениям и беспозвоночным… … Большой Энциклопедический словарь

    РЕГЕНЕРАЦИЯ (от позднелат. regeneratio возрождение, возобновление), в биологии восстановление организмом утраченных или поврежденных органов и тканей, а также восстановление целого организма из его части. В большей степени присуща растениям и… … Энциклопедический словарь

    РЕГЕНЕРАЦИЯ БИОГЕННЫХ ВЕЩЕСТВ - процесс возврата биогенных веществ в воду или почву из тканей отмерших организмов в результате жизнедеятельности сапрофитов. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989 … Экологический словарь

    Восстановление организмом утраченных частей на той или иной стадии жизненного цикла. Регенерация обычно происходит в случае повреждения или утраты какого нибудь органа или части организма. Однако помимо этого в каждом организме на протяжении всей … Энциклопедия Кольера

    I Регенерация (лат. regeneratio возрождение, возобновление) обновление в процессе жизнедеятельности структур организма (физиологическая регенерация) и восстановление тех из них, которые были утрачены в результате патологических процессов… … Медицинская энциклопедия

    - (от позднелат. regeneratio возрождение, возобновление) в биологии, восстановление организмом утраченных или поврежденных органов и тканей, а также восстановление целого организма из его части. Р. наблюдается в естественных условиях, а… … Большая советская энциклопедия

Книги

  • Регенерация - настоящее и будущее , П. Мэттсон. Эта книга рассказывает о восстановлении утраченных органов (регенерации), о медико-биологическом аспекте этой проблемы. Материал, представленный в книге, свидетельствует о том, что…

Физиологическая регенерация – восстановление организмом утраченных или поврежденных органов или тканей.

Репаративная регенерация – восстановление какой – либо ткани в патологических услови­ях.

Эпителиальная ткань:

Регенерация. Покровный эпителий постоянно испытывает влияние внешней среды, поэтому эпителиаль­ные клетки сравнительно быстро изнашиваются и погибают. Источником их восстановления являются стволовые клетки эпителия. Они сохраняют спо­собность к делению в течение всей жизни организма. Размножаясь, часть вновь образованных клеток вступает в дифференцировку и превращается в эпителиоциты, подобные утраченным. Высокая способность эпителия к физиологической регенерации служит основой для быстрого восстановления его в патологических услови­ях (репаративная регенерация ).

С возрастом в покровном эпителии наблюдается ослабление процессов обновления.

Соединительная ткань:

Собственная соединительная ткань

Регенерация. Физиологическая регенерация хрящевой ткани осуществ­ляется за счет малоспециализированных клеток надхрящницы и хряща пу­тем размножения и дифференцировки прехондробластов и хондробластов. Однако этот процесс идет очень медленно. Посттравматическая регенера­ция хрящевой ткани внесуставной локализации осуществляется за счет над­хрящницы. Репарация может происходить за счет клеток окру­жающей соединительной ткани, не потерявших способности к метаплазии.

Костная ткань

Регенерация. Физиологическая регенерация костных тканей происходит медленно за счет остеогенных клеток надкостницы, эндоста и остеогенных клеток в канале остеона. Посттравматическая регенерация кост­ной ткани протекает лучше в тех случаях, когда концы сломанной кости не смещены относительно друг друга. Процессу остеогенеза предшествует формирование соединительнотканной мозоли, в толще которой могут об­разовываться хрящевые отростки. Оссификация в этом случае идет по типу вторичного (непрямого) остеогенеза. Но прежде чем начнут строить кость остеобласты, осте­окласты образуют небольшую щель между репонированными концами кости.

Мышечная ткань:

Регенерация скелетной мышечной ткани :

Ядра миосимиластов делиться не могут, так как у них отсутствуют клеточные центры. Камбиальными элементами служат миосателлитоциты. Пока организм растет, они делятся, а дочерние клетки встраиваются в концы симпластов. По окончании роста размножение миосателлитоцитов затухает. После повреждения мышечного волокна на некотором протяжении от места травмы оно разрушается и егофрагменты фагоцитируются макрофагами. Восстановление тканей осуни ляется за счет двух механизмов: компенсаторной гипертрофии самого симпласта и пролиферации миосателлитоцитов. Миосателлитоциты образуют миотубы, которые входят в состав вновь образованных мышечных волокон или формируют новые волокна.

Возможности регенерации сердечной мышечной ткани : Стволовых клеток в сердечной мышце нет, поэтому погибающие кардиомиоциты не восстанавливаются.

Нервная ткань:

Регенерация зависит от места травмы. В ЦНС и в периферической нервной системе погибшие нейроны не восстанавливаются. Полноценной регенерации нервных волокон в составе ЦНС обычно не происходит, но нервные волокна в составе периферических нервов обычно хорошо регенерируют. При этом нейролеммоциты периферического отрезка и ближайшего к области травмы участка пролиферируют.

Поврежденные нервные волокна головного и спинного мозга не регенерируют.

Рыхлая волокнистая соединительная ткань. Морфо-функциональная харак­теристика. Межклеточное вещество, строение и значение. Фибробласты и их роль в образовании межклеточного вещества.

Межклеточное вещество , или матрикс, соединительной ткани состоит из коллагеновых и эластических волокон, а также из основного (аморфного) вещества. Межклеточное вещество как у зароды­шей, так и у взрослых образуется, с одной стороны, путем секреции, осу­ществляемой соединительнотканными клетками, а с другой - из плазмы крови, поступающей в межклеточные пространства.

У зародышей человека образование межклеточного вещества происхо­дит начиная с 1-2-го месяца внутриутробного развития. В течение жизни межклеточное вещество постоянно обновляется - резорбируется и восста­навливается.

Коллагеновые структуры, входящие в состав соединительных тканей организмов человека и животных, являются наиболее представительными ее компонентами, образующими сложную организационную иерархию. Ос­нову всей группы коллагеновых структур составляет волокнистый белок - коллаген, который определяет свойства коллагеновых структр.

Коллагеновые волокна в составе разных видов соеди­нительной ткани определяют их прочность. В рыхлой неоформленной волокнистой соединительной ткани они располагаются в различных направлени­ях в виде волнообразно изогнутых, спиралевидно скрученных, округлых или уплощенных в сечении тяжей. Внутренняя структура коллагенового волокна определяется фибрилляр­ным белком - коллагеном, который синтезируется на рибосомах грануляр­ной эндоплазматической сети фибробластов.

Различают 14 типов коллагена, отличающихся молекулярной организа­цией, органной и тканевой принадлежностью.

Эластические волокна. Наличие эластических волокон в соединительной ткани определяет ее эластичность и растяжимость. В рыхлой волокнистой со­единительной ткани они широко анастомозируют друг с другом. В сос­таве эластических волокон различают микрофибриллярный и аморфный ком­поненты.

Основой эластических волокон является глобулярный гликопротеин - эластин, синтезируемый фибробластами и гладкими мышечными клетками.

Фибробласты (фибробластоциты) - клетки, синтезирующие компоненты межкле­точного вещества: белки (коллаген, эластин), протеогликаны, гликопротеины.

Среди мезенхимных клеток имеются стволовые клетки, дающие начало дифферону фибробластов: стволовые клетки, полустволовые клетки-предшественники, малоспециализированные, дифференцированные фибробласты (зрелые, активно функционирующие), фиброциты (дефинитивные формы клеток), а также миофибробласты и фиброкласты. С главной функцией фиб­робластов связаны образование основного вещества и волокон, заживление ран, развитие рубцовой ткани, образование соединительнотканной капсу­лы вокруг инородного тела и др. Морфологически в этом диффероне мож­но идентифицировать только клетки, начиная с малоспециализированного фибробласта.

В цитоплазме фибробластов , особенно в периферическом слое, распо­лагаются микрофиламенты, содержащие белки типа ак­тина и миозина, что обусловливает способность этих клеток к движению. Движение фибробластов становится возможным только после их связыва­ния с опорными фибриллярными структурами с помощью фибронектина - гликопротеина, синтези­рованного фибробластами и другими клетками, обеспечивающего адгезию клеток и неклеточных структур.

Рыхлая волокнистая соединительная ткань. Морфо-функциональная харак­теристика. Макрофаги, строение и источники развития. Понятие о макрофагической системе. Вклад русских ученых в гистофизиологию соединительных тканей.

Рыхлая волокнистая соединительная ткань обнаруживается во всех органах, так как она сопровождает крс-веносные и лимфатические сосуды и образует строму многих органов. Не смотря на наличие органных особенностей, строение рыхлой волокнистой соединительной ткани в различных органах имеет сходство. Она состоит из клеток и межклеточного вещества.

Макрофаги (макрофагоциты) - это гетерогенная специализированная клеточная популяция защитной системы организма. Различают две группы макрофа­гов - свободные и фиксированные. К свободным макрофагам относятся мак­рофаги рыхлой соединительной ткани, или гистиоциты; макрофаги сероз­ных полостей; макрофаги воспалительных экссудатов; альвеолярные макро­фаги легких. Макрофаги способны перемещаться в организме. Группу фиксированных (резидентных) макрофагов составляют макрофаги костного моз­га и костной ткани (остеокласты), селезенки, лимфатических узлов (денд­ритные макрофаги), внутриэпидермальные макрофаги (клетки Лангерганса), макрофаги ворсин плаценты (клетки Хофбауэра), ЦНС (микроглия).

Обычно макрофаги, за ис­ключением некоторых их видов (гигантские клетки инородных тел, хондро- и остеокласты), имеют одно ядро. В ядрах содержатся крупные глыбки хроматина.

Цитоплазма базофильна, богата лизосомами, фагосомами (отличительные признаки) и пиноцитозными пузырьками, содержит умеренное количество митохондрий, гранулярную эндоплазматическую сеть, аппарат Гольджи, включения гликогена, липидов и др. В цитоплазме макрофагов выделяют «клеточную периферию», обеспечива­ющую макрофагу способность передвигаться, втягивать микровыросты ци­топлазмы, осуществлять эндо- и экзоцитоз. Непосредственно под плазмолеммой находится сеть актиновых филаментов диаметром. Через эту сеть проходят микротрубочки, которые прикрепляются к плазмолемме.

Формы проявления защитной функции макрофагов : 1) поглощение и дальнейшее расщепление или изоляция чужеродного материала; 2) обезвре­живание его при непосредственном контакте; 3) передача информации о чу­жеродном материале иммунокомпетентным клеткам, способным его нейтра­лизовать; 4) оказание стимулирующего воздействия на другую клеточную по­пуляцию защитной системы организма.

Понятие о макрофагической системе. К этой системе относятся сово­купность всех клеток, обладающих способностью захватывать из ткане­вой жидкости организма инородные частицы, погибающие клетки, не­клеточные структуры, бактерии и др. К таким клет­кам относятся макрофаги (гистиоциты) рыхлой волокнистой соедини­тельной ткани, звездчатые клетки синусоидных сосудов печени, свобод­ные и фиксированные макрофаги кроветворных органов (костного моз­га, селезенки, лимфатических узлов), макрофаги легкого, воспалитель­ных экссудатов (перитонеальные макрофаги), остеокласты, гигантские клетки инородных тел и глиальные макрофаги нервной ткани (микро-глия).

Макрофагическая система представляет собой мощный защитный аппарат, принимающий участие как в общих, так и в местных защитных реакци­ях организма. В целостном организме макрофагическая система регули­руется как местными механизмами, так нервной и эндокринной систе­мами.

Вклад русских учёных . Начатое еще А. А. Максимовым изучение соединительной ткани при­обрело широкий размах в советский период. Изучение ведется в основном по двум направлениям . Первое направление в изучении соединительной ткани выражается в широких сравнительно-гистологических исследованиях соединительной ткани и крови (С. В. Мясоедов, А. А. Заварзин, Ф. М. Ла-заренко, Е. С. Данини, Г. В. Ясвоин, Г. К. Хрущев и др.).

Второе направление - изучение гистофизиологии соединительной тка­ни различных органов и систем, а также ее изменений под влиянием не­рвных и эндокринных факторов (В. Г. Елисеев, Т. А. Григорьева и др.)- С эти­ми направлениями логически связано изучение гистогенеза соединительной ткани.


Регенерация крови происходит таким образом, что вначале возме­щается плазма за счет поступления в кровеносное русло тканевой жидкости, а затем - форменные элементы крови за счет поступления в кровоток ново­образованных клеток из кроветворной ткани. Гемопоэз (физиологическая регенерация крови ) осуществляется в миелоидной и лимфоидной тканях, причем эритроциты, зернистые лейкоциты и тромбоциты образуются в красном костном мозге, лимфоциты - в лимфатических узлах, селезенке и лимфатических фолликулах, а моноциты- во всех кроветворных тканях. Источником образования форменных элементов крови служит единая полипотентная стволовая клетка.

При кровопотерях включается репаративная регенерация крови, которая отличается от физиологической тем, что кроветворение может происходить вне красного костного мозга - внекостномозговое (экстрамедуллярное) кроветворение. При этом красный мозг появляется в длинных трубчатых костях, во многих органах и тканях - селезенке, печени, лимфатических узлах, слизистых оболочках, жировой клетчатке и т. д.

Регенерация крови может быть резко угнетена (например, при лучевой болезни, апластической анемии, агранулоцитозе) или изврашена (например, при злокачественной анемии, полицитемии, лейкозе). В кровь при этом поступают незрелые, функционально неполноценные и быстро разрушающиеся форменные элементы. В таких случаях говорят о пато­логической регенерации крови .

Регенерация кровеносных и лимфатиче­ских сосудов зависят от их калибра. Микросо­суды обладают большей способностью регенерировать, чем крупные сосуды.

Регенерация сосудов можетпроисходить путем почкования или аутогенно. Почкование, когда в стенке сосуда появляются боковые выпячивания за счет усиленно делящихся эндотелиальных клеток, которые образуют клеточные тяжи. В тяжах из эндотелия возникают просветы, тяжи превращаются в выстланные эндоте­лием трубки, в которые поступает кровь или лимфа из материнского сосуда. В сосудистую стенку врастают нервные волокна, ответвляющиеся от предшествующих не­рвов.

Аутогенное новообразование сосудов состоит в том, что в соедини­тельной ткани появляются скопления недифференцированных клеток, между которыми возникают щели. В эти щели открываются предшествующие ка­пилляры и изливается кровь. Клетки соединительной ткани, окружающие ще­ли, образуют эндотелиальную выстилку и другие элементы стенки сосуда.

Крупные сосуды не обладают достаточными пластичными свойства­ми, Поэтому при повреждении их стенки (атеросклероз, артериит, аортит, аневризма, травма) восстанавливаются лишь структуры внутренней оболочки, эндотелиальная выстилка; а элементы средней и наружной оболочек обычно замешаются соединительной тканью, что ведет нередко к сужению или обли­терации просвета сосуда.

Регенерация соединительной ткани начинается с пролиферации молодых мезенхимальных элементов и новообразования микрососудов. Образуется молодая, богатая клетками (лейкоциты, плазматические клетки, лаброциты) и тонкостенными сосудами соедини­тельная ткань. Она называется грануляционной тканью. В дальнейшем происходит созревание грануляционной ткани: число гематогенных элементов уменьшает­ся, а фибробластов - увеличивается. Фибробласты синтезируют компоненты волокнистых структур и основного вещества соединительной ткани. Новообразование соединительной ткани происходит не только при ее повреждении, но и при неполной регенерации других тканей, а также при организации (инкапсуляции), заживлении ран, продуктивном воспалении.

Созревание грануляционной ткани может иметь те или иные отклонения. Воспаление, развивающееся в грануляционной ткани, приводит к задержке ее созревания, а чрезмерная синтетическая активность фибробластов - к избыточному образованию коллагеновых волокон с последующим резко выраженным их гиалинозом. Келоидные рубцы образуются после различных травматических поражений кожи, особенно после ожогов.

Регенерация жировой ткани происходит за счет новообразова­ния соединительнотканных клеток, которые затем превращаются в жировые путем накопления в цитоплазме липидов. Жировые клетки складываются в дольки, между которыми располагаются соединительнотканные прослойки с сосудами и нервами. Регенерация жировой ткани может происходить также из ядросодержащих остатков цитоплазмы жировых клеток, которые путем на­копления капель липидов превращаются в зрелые жировые клетки.

Регенерация костной ткани при переломе костей в значительной мере зависит от степени разрушения кости, правильной репозиции костных отломков, местных условий (состояние кровообращения, воспаление и т. д.). При неосложненном костном переломе может происходить первичное костное сращение. Оно начинается с врастания в область дефекта и гематомы между от­ломками кости молодых мезенхимальных элементов и сосудов. Возникает так называемая предварительная соединительнотканная мо­золь, в которой сразу же начинается образование кости. В остеогенной фиброретикулярной ткани по­являются малообызвествленные костные балочки, число которых нарастает. Образуется предварительная костная мозоль. В дальней­шем она созревает и превращается в зрелую пластинчатую кость. Вновь образованная ткань с помощью остеокластов и остеобластов подвергается перестрой­ке, появляется костный мозг, восстанавливаются васкуляризация и иннерва­ция. При нарушении местных условий регенерации кости (расстройство кро­вообращения), подвижности отломков, обширных диафизарных переломах происходит вторичное костное сращение. Для этого ви­да костного сращения характерно образование между костными отломками сначала хрящевой ткани, на основе которой строится костная ткань.

Регенерация хрящевой ткани в отличие от костной происходит обычно неполно. Лишь небольшие дефекты ее могут замещаться новообразо­ванной тканью за счет камбиальных элементов надхрящницы - хондробластов. Эти клетки создают основное вещество хряща, а затем превра­щаются в хрящевые клетки. Крупные дефекты хрящевой ткани замещаются рубцовой.

Регенерация мышечной ткани , ее возможности и формы раз­личны в зависимости от вида этой ткани. Гладкие мышцы при незначительных де­фектах могут регенерировать достаточно полно. Значительные участки повреждения гладких мышц замещаются рубцом. При этом в сохранившихся участках гладкие мышечные волокна подвергаются гипертрофии. Регенерация поперечнополосатой мускулатуры проис­ходит лишь при сохранении сарколеммы. Внутри трубок из сарколеммы осуществляется регенерация саркоплазмы и ее органелл, в результате чего по­являются клетки, называемые миобластами. Они вытягиваются, число ядер в них увеличивается, в саркоплазме постепенно дифференцируются миофибриллы, и трубки сарколеммы вновь превращаются в поперечнополосатые мышечные волокна.

Если при повреждении мышцы целость сарколеммы нарушается, то на ме­сте травмы обычно образуется рубец.

Регенерация мышцы сердца человека, как и поперечнополосатой мускулатуры, заканчивается рубцеванием дефекта. Однако в сохранившихся мышечных волокнах происходит интенсивная гиперплазия ультраструктур, что ведет к гипертрофии волокон и восстановлению функции органа.

Регенерация эпителия осуществляется в большинстве случаев полно, так как он обладает высокой регенераторной способностью. Особенно хорошо регенерирует покровный эпителий. Восстановление многослойного плоского ороговевающего эпителия воз­можно даже при довольно крупных дефектах кожи. При регенерации эпидермиса в краях дефекта происходит усиленное размножение клеток зародышевого (камбиального) мальпигиева слоя. Образующиеся эпителиальные клетки сначала покрывают дефект одним слоем. В дальнейшем пласт эпителия становится многослойным, клетки его дифференцируются, и он приобретает все признаки эпидермиса, включающего в себя ростковый, зернистый, блестящий (на подошвах и ладонной поверхности кистей) и роговой слои. При нарушении регенерации эпителия кожи образуются незаживающие язвы, нередко с разрастанием в их краях атипичного эпителия, что может по­служить основой для развития рака кожи.

В печени участок некроза всегда подвергает­ся рубцеванию, однако в остальной части органа происходит интенсивное но­вообразование клеток, а также гиперплазия субклеточных структур в предшествующих клетках, что сопровождается их гипертрофией. В результате этого исходная масса и функция органа быстро восстанавли­ваются. Регенераторные возможности печени почти безграничны. После уда­ления 4 /5 органа исходная масса его восстанавливается в течение 1 1 /г - 2 мес.

В поджелудочной железе регенераторные процессы хорошо выражены как в экзокринных отделах, так и панкреатических островках, причем эпителий экзокринных отделов становится источником восстановления островков.

В почках некротические изменения эпителия канальцев заканчивается размножением сохранившихся клеток и восстановлением канальцев, ако лишь при сохранении тубулярной базальной мембраны. При ее разрушении эпителий не восстанавливается и каналец замещается соединительной тканью. Не восстанавливается погибший канальцевый эпителий и в том случае, когда одновременно с канальцем погибает сосудистый клубочек. При этом на месте погибшего нефрона разрастается рубцо-соединительная ткань, а окружающие нефроны подвергаются регенераторной гипертрофии. После удаления одной почки оставшаяся подвергается гипертрофии (ви­карная гипертрофия) и со временем обеспечивает нормальную почеч­ную функцию.

В железах внутренней секреции восстановительные процессы также выражаются в форме неполной регенерации.

В легком после удале­ния отдельных долей в оставшейся части происходит гипертрофия и гипер­плазия тканевых элементов, обеспечивающие восстановление функции органа. Однако удаление больших участков легочной ткани, особенно целого легкого, может сопровождаться развитием функциональной недостаточности оставше­гося органа.

Регенерация разных отделов нервной системы происходит неоднозначно. В головном и спинном мозге новообразования ганглиозных клеток не происходит и при разрушении их восстановление функции возможно лишь за счет внутриклеточной регенерации сохранившихся клеток. Невроглии, осо­бенно микроглии, свойственна клеточная форма регенерации, поэтому дефекта ткани головного и спинного мозга обычно заполняются пролиферирующими клетками невроглии - возникают так называемые глиальные (г л и-о з н ы е) рубцы.

При повреждении вегетативных узлов наряду с гиперплазией ультраструктур клеток происходит и их новообразование.

При нарушении целости периферического нерва регенерация про­исходит за счет центрального отрезка, сохранившего связь с клеткой, в то время как периферический отрезок погибает. Регенерация нервных волокон завершается их миелинизацией и восста­новлением нервных окончаний.

На протяжении всей жизни организма в тканях происходят процессы изнашивания и отмирания клеток (физиологическая дегенерация) и замены их новыми (физиологическая регенерация). Физиологическая регенерация может быть внутриклеточной (обновление органелл) и клеточной (обновление на уровне клеток за счет пролиферации камбиальных или дифференцированных клеток). Для каждой ткани характерны специфические особенности морфологических проявлений физиологической регенерации на клеточном и субклеточном уровнях.

Если понимать физиологическую регенерацию тканей как процесс клеточного обновления, то к лабильным (или обновляющимся) тканям следует отнести кроветворные ткани, кишечный эпителий, эпидермис, рыхлую соединительную ткань и некоторые другие. Для них характерен высокий уровень пролиферативной активности клеток.

Ряд тканей отличаются сочетанием клеточной и внутриклеточной форм физиологической регенерации (эпителий печени, почек, легких, эпителии эндокринных органов, гладкая мышечная ткань и другие).

Сердечная мышечная ткань и нервная ткань характеризуются внутриклеточной формой физиологической регенерации . В этих тканях, не имеющих камбиальных клеток, происходит непрерывное обновление внутриклеточных ультраструктур.

Физиологическая регенерация тканей - это одно из проявлений сложного процесса постнатального гистогенеза. Для физиологической регенерации свойственна генетическая детерминированность составляющих ее процессов - пролиферации клеток, их дифференцировки, роста, интеграции и функциональной адаптации. Закономерности постнатального гистогенеза обусловливают не только физиологическую регенерацию тканей, но и все стороны их возрастной динамики.

Регенерационный гистогенез

В ответ на действие экстремального фактора и нарушение тканевой организации органа возникает комплекс реакций с вовлечением всех структурных уровней организации живого. Можно лишь условно выделить те процессы, которые характерны для тканевого уровня - а именно, процессы регенерационного гистогенеза.

Сразу же после повреждения в тканях развиваются реактивные изменения , сопровождающиеся нарушениями пролиферации, дифференцировки и интеграции клеток. Если поврежденные клетки не адаптируются к новым условиям, наступает их распад, гибель и элиминация. Формы проявления регенерационного гистогенеза (например, клеточное размножение или гиперплазия внутриклеточных структур) обусловлены закономерными процессами эмбрионального гистогенеза и специфичны для каждой ткани.

В обновляющихся тканях , для нормального гистогенеза которых характерна пролиферация клеток путем митоза, и в процессах регенерации основная роль принадлежит митотическому делению клеток. Регенерационный гистогенез растущих тканей включает процессы как клеточной пролиферации, так и внутриклеточного увеличения структурных компонентов (органелл). Регенерационный гистогенез стационарных тканей происходит за счет внутриклеточных репаративных процессов (увеличение количества органелл, рост отростков и образование синаптических структур в нервных клетках).

Таким образом, изучение условий успешной регенерации тканей возможно на путях более глубокого изучения гистогенезов, ибо оптимизация посттравматической регенерации должна проводиться с учетом особенностей физиологической регенерации конкретной ткани. Так, например, бесполезно стимулировать нейроны к митозу, если этот процесс им несвойственен. Напротив, стимуляция митозов в обновляющихся тканях вполне оправданна.

В поврежденном органе процесс регенерации включает всегда комплекс межтканевых взаимодействий (корреляций). В ходе регенерации складываются сложные взаимоотношения между эпителиями, соединительными и нервными тканями. Воспалительные разрастания соединительной ткани в значительной степени определяют исход восстановительного процесса. Взаимодействия различных тканей с нервной, эндокринной, сосудистой, иммунной системами оказывают существенное влияние на характер их реактивности и регенерации.

Ткани, являясь составными частями органов , в своих регенеративных процессах подчинены не только собственно тканевым, но и органным закономерностям. Реализация способностей тканей к посттравматической регенерации осуществляется в системе органа на основе межтканевых корреляций.