Мощный регулятор тока на тиристоре т250. Однофазный тиристорный регулятор с активной нагрузкой. Схема тиристорного регулятора напряжения

Очень старая и очень простая схема для регулирования мощности паяльника, который также можно применять и для обогревательных приборов. Можно и для ламп накаливания, но это уже сегодня не актуально, думаю, так как большинство уже использует энергосберегающие.

Схема не только проста, но и надежна, и испытана временем лично мною и другими людьми, держит установленную мощность стабильно. И еще две схемы.

Но сразу скажу, что данные регуляторы мощности работают только с нагревательными приборами и лампами накаливания, с трансформаторами. С двигателями и прочим, результаты непредсказуемы — там всякие индуктивные дела начнутся.

Первые две схемы настолько просты, что печатные платы просто бессмысленны, и их можно смонтировать в какой-нибудь коробочке от неисправного блока зарядки мобильника или чего-то подобного. Для начинающих с малым опытом самое то!

Вот, собственно, сама схема регулятора мощности, которая настолько проста, что я вписал номиналы прямо в нее, так удобней и наглядней. Вся хитрость данной схемки в неоновой лампе и конденсаторе. Как это работает, я и сам толком не понимаю, 🙂 но работает отлично. Ведь для стабильного удержания заданной мощности тиристором или симистором, обычно применяются управляющие элементы на полупроводниках, а тут какая-то лампочка, которая изготавливалась для совершенно других целей, да конденсатор, творят чудеса. В общем, выражаясь сегодняшним языком, можно сказать, что схема самая что ни есть креативная. К тому же (чуть не забыл!), неоновая лампочка одновременно служит еще и индикатором мощности: она меняет яркость, и этим самым можно контролировать регулировку.

При этом схема регулирует мощность от 0% до 100% !

Так выглядят старый добрый симистор КУ208Г и рядом с ним различные неоновые лампочки. И то, и другое можно за гроши найти на радиорынке, в современном магазине вряд ли. Впрочем, неонку можно из какого-нибудь старого бытового прибора выдернуть, а аналог КУ208Г можно думаю и в магазине купить из чего-то современного.

Вроде бы аналоги КУ208В,ТС112-10,ТС112-16, ТС122-10, ТС122-25, Т820КВ.

Регулятор мощности на тиристоре КУ202Н

Если уж совсем туго с неонкой будет или с КУ208, то можно собрать схемку регулятора еще проще. Даже не верится: куда уж еще проще? 🙂 Да, без неоновой лампы и вместо симистора — тиристор КУ202Н, который еще более доступен, более дешев и аналогов навалом. Диод также можно любой, подходящий по току и напряжению.


Думаю, по схеме понятно, что данный регулятор работает в диапазоне от 50% до 100% , но до 99%, поскольку одна сетевая полуволна идет напрямую через диод.
Да, в общем, для паяльника и камина самое то, думаю, от ноля регулировать вряд ли кому-то понадобится. От 50% даже и удобней, по-моему.


Если захотите погасить помехи от переключения тиристора/симистора в первой или второй схеме регулятора, то можно сделать петлю на ферритовом кольце от старого монитора, например, или другого ненужного сетевого компьютерного шнура.

Регулятор мощности без помех

А это уже схема регулятора (кликабельно) для более продвинутых, для фанатов «цифры». Регулирует мощность как и предыдущая от 50% , но ее отличие от двух первых в том, что регулирование осуществляется уже не за счет отрезания части полуволны сетевой синусоиды, что собственно и создает помехи, а за счет отсчета и пропускания разного количества полуволн. Но полуволны пропускаются целиком, именно поэтому и нет помех: открытие тиристора происходит на уровне, близком к нулю (каких-то пару вольт, нужных для его открытия).

На схеме зелеными кружками обозначены некоторые точки, а на диаграммах ниже — напряжения в этих точках, поясняющие работу схемы регулятора мощности без помех.

Причем, схема имеет свою особенность: по нижним трем диаграммам можно сообразить без пояснений, по какому принципу регулируется мощность. Регулировка ступенчатая, и получается такая дискретность: 50%, 66,6%, 75%… Далее по логике, как я понимаю, 80%, 83,3%, 85,7%… Так выходит, потому что время пауз: 1/2, 1/3, 1/4, 1/6, 1/7 и т.д. То есть, шаг регулирования уменьшается с повышением мощности, что разумно — применительно к паяльнику.

Стрелочный индикатор к паяльнику

Согласитесь, без индикации регулировать мощность паяльника как-то некошерно. Да, можно нарисовать метки на регуляторе, но эффект и удобства не те.

Для большего удобства регулировки нагрева паяльника совсем несложно и очень полезно добавить к собранному регулятору индикацию на каком-нибудь небольшом стрелочном приборе. Такой индикатор можно выдернуть из старой ненужной аудиоаппаратуры, если таковая завалялась еще, либо пройтись и отовариться на местном блошином рынке.

Примерная схема индикатора с использованием подобного стрелочного прибора показана на рисунке. Номиналы, как и сама схема допускает изменения и упрощения при понимании принципов тем, кто будет собирать ее. Номиналы на данной схеме применялись с использованием стрелочного индикатора М68501, который применялся в советских магнитофонах. Основная настройка схемы при использовании М68501 — это подбор резистора R4. При использовании другого стрелочного индикатора, вероятно придется подбирать еще и R3, ведь для удобной вам индикации при уменьшении мощности паяльника, должен быть соответствующий баланс резисторов R3/R4. Чтобы не получалось так, что при мощности в 50% стрелка индикатора уменьшается на 10-20%, либо наоборот, при небольшом уменьшении мощности, отклоняется на половину.

Вы еще не видели мой электромагнитный маятник?

При разработке регулируемого источника питания без высокочастотного преобразователя разработчик сталкивается с такой проблемой, что при минимальном выходном напряжении и большом токе нагрузки на регулирующем элементе стабилизатор рассеивается большая мощность. До настоящего времени в большинстве случаев эту проблему решали так: делали несколько отводов у вторичной обмотки силового трансформатора и разбивали весь диапазон регулировки выходного напряжения на несколько поддиапазонов. Такой принцип использован во многих серийных источниках питания, например, УИП-2 и более современных. Понятно, что использование источника питания с несколькими поддиапазонами усложняется, усложняется также дистанционное управление таким источником питания, например, от ЭВМ.

Выходом мне показалось использование управляемого выпрямителя на тиристоре т. к. появляется возможность создания источника питания, управляемого одной ручкой установки выходного напряжения или одним управляющим сигналом с диапазоном регулировки выходного напряжения от нуля (или почти от нуля) до максимального значения. Такой источник питания можно будет изготовить из готовых деталей, имеющихся в продаже.

К настоящему моменту управляемые выпрямители с тиристорами описаны и весьма подробно в книгах по источникам питания, но практически в лабораторных источниках питания применяются редко. В любительских конструкциях они также редко встречаются (кроме, конечно, зарядных устройств для автомобильных аккумуляторов). Надеюсь, что настоящая работа поможет изменить это положение дел.

В принципе, описанные здесь схемы могут быть применены для стабилизации входного напряжения высокочастотного преобразователя, например, как это сделано в телевизорах “Электроника Ц432”. Приведенные здесь схемы могут также быть использованы для изготовления лабораторных источников питания или зарядных устройств.

Описание своих работ я привожу не в том порядке как я их проводил, а более или менее упорядочено. Сначала рассмотрим общие вопросы, затем “низковольтные” конструкции типа источников питания для транзисторных схем или зарядки аккумуляторов и затем “высоковольтные” выпрямители для питания схем на электронных лампах.

Работа тиристорного выпрямителя на емкостную нагрузку

В литературе описано большое количество тиристорных регуляторов мощности, работающих на переменном или пульсирующем токе с активной (например, лампы накаливания) или индуктивной (например, электродвигатель) нагрузкой. Нагрузкой же выпрямителя обычно является фильтр в котором для сглаживания пульсаций применяются конденсаторы, поэтому нагрузка выпрямителя может иметь емкостный характер.

Рассмотрим работу выпрямителя с тиристорным регулятором на резистивно-емкостную нагрузку. Схема подобного регулятора приведена на рис. 1.

Рис. 1.

Здесь для примера показан двухполупериодный выпрямитель со средней точкой, однако он может быть выполнен и по другой схеме, например, мостовой. Иногда тиристоры кроме регулирования напряжения на нагрузке U н выполняют также функцию выпрямительных элементов (вентилей), однако такой режим допускается не для всех тиристоров (тиристоры КУ202 с некоторыми литерами допускают работу в качестве вентилей). Для ясности изложения предположим, что тиристоры используются только для регулирования напряжения на нагрузке U н , а выпрямление производится другими приборами.

Принцип работы тиристорного регулятора напряжения поясняет рис. 2. На выходе выпрямителя (точка соединения катодов диодов на рис. 1) получаются импульсы напряжения (нижняя полуволна синусоиды “вывернута” вверх), обозначенные U выпр . Частота пульсаций f п на выходе двухполупериодного выпрямителя равна удвоенной частоте сети, т. е. 100 Hz при питании от сети 50 Hz . Схемауправления подает на управляющий электрод тиристора импульсы тока (или света если применен оптотиристор) с определенной задержкой t з относительно начала периода пульсаций, т. е. того момента, когда напряжение выпрямителя U выпр становится равным нулю.

Рис. 2.

Рисунок 2 выполнен для случая, когда задержка t з превышает половину периода пульсаций. В этом случае схема работает на падающем участке волны синусоиды. Чем больше задержка момента включения тиристора, тем меньше получится выпрямленное напряжение U н на нагрузке. Пульсации напряжения на нагрузке U н сглаживаются конденсатором фильтра C ф . Здесь и далее сделаны некоторые упрощения при рассмотрении работы схем: выходное сопротивление силового трансформатора считается равным нулю, падение напряжения на диодах выпрямителя не учитывается, не учитывается время включения тиристора. При этом получается что подзаряд емкости фильтра C ф происходит как бы мгновенно. В реальности после подачи запускающего импульса на управляющий электрод тиристора заряд конденсатора фильтра занимает некоторое время, которое, однако, обычно намного меньше периода пульсаций Т п.

Теперь представим, что задержка момента включения тиристора t з равна половине периода пульсаций (см. рис. 3). Тогда тиристор будет включаться, когда напряжение на выходе выпрямителя проходит через максимум.


Рис. 3.

В этом случае напряжение на нагрузке U н также будет наибольшим, примерно таким же, как если бы тиристорного регулятора в схеме не было (пренебрегаем падением напряжения на открытом тиристоре).

Здесь мы и сталкиваемся с проблемой. Предположим, что мы хотим регулировать напряжение на нагрузке почти от нуля до наибольшего значения, которое можно получить от имеющегося силового трансформатора. Для этого с учетом сделанных ранее допущения потребуется подавать на тиристор запускающие импульсы ТОЧНО в момент, когда U выпр проходит через максимум, т. е. t з = T п /2. С учетом того, что тиристор открывается не моментально, а подзарядка конденсатора фильтра C ф также требует некоторого времени, запускающий импульс нужно подать несколько РАНЬШЕ половины периода пульсаций, т. е. t з < T п /2. Проблема в том, что во-первых сложно сказать насколько раньше, т. к. это зависит от таких причин, которые при расчете точно учесть сложно, например, времени включения данного экземпляра тиристора или полного (с учетом индуктивностей) выходного сопротивления силового трансформатора. Во-вторых, даже если произвести расчет и регулировку схемы абсолютно точно, время задержки включения t з , частота сети, а значит, частота и период T п пульсаций, время включения тиристора и другие параметры со временем могут измениться. Поэтому для того чтобы получить наибольшее напряжение на нагрузке U н возникает желание включать тиристор намного раньше половины периода пульсаций.

Предположим, что так мы и поступили, т. е. установили время задержки t з намного меньшее Т п /2. Графики, характеризующие работу схемы в этом случае приведены на рис. 4. Заметим, что если тиристор откроется раньше половины полупериода, он будет оставаться в открытом состоянии пока не закончится процесс заряда конденсатора фильтра C ф (см. первый импульс на рис. 4).


Рис. 4.

Оказывается, что при малом времени задержки t з возможно возникновение колебаний выходного напряжения регулятора. Они возникают в том случае, если в момент подачи на тиристор запускающего импульса напряжение на нагрузке U н оказывается больше напряжения на выходе выпрямителя U выпр . В этом случае тиристор оказывается под обратным напряжением и не может открыться под действием запускающего импульса. Один или несколько запускающих импульсов могут быть пропущены (см. второй импульс на рис. 4). Следующее включение тиристора произойдет когда конденсатор фильтра разрядится и в момент подачи управляющего импульса тиристор будет находиться под прямым напряжением.

Вероятно, наиболее опасным является случай, когда оказывается пропущен каждый второй импульс. В этом случае через обмотку силового трансформатора будет проходить постоянный ток, под действием которого трансформатор может выйти из строя.

Для того чтобы избежать появления колебательного процесса в схеме тиристорного регулятора вероятно можно отказаться от импульсного управления тиристором, но в этом случае схема управления усложняется или становится неэкономичной. Поэтому автор разработал схему тиристорного регулятора в которой тиристор нормально запускается управляющими импульсами и колебательного процесса не возникает. Такая схема приведена на рис. 5.


Рис. 5.

Здесь тиристор нагружен на пусковое сопротивление R п , а конденсатор фильтра C R н подключены через пусковой диод VD п . В такой схеме запуск тиристора происходит независимо от напряжения на конденсаторе фильтра C ф .После подачи запускающего импульса на тиристор его анодный ток сначала начинает проходить через пусковое сопротивление R п и, затем, когда напряжение на R п превысит напряжение на нагрузке U н , открывается пусковой диод VD п и анодный ток тиристора подзаряжает конденсатор фильтра C ф . Сопротивление R п выбирается такой величины чтобы обеспечить устойчивый запуск тиристора при минимальном времени задержки запускающего импульса t з . Понятно, что на пусковом сопротивлении бесполезно теряется некоторая мощность. Поэтому в приведенной схеме предпочтительно использовать тиристоры с малым током удержания, тогда можно будет применить пусковое сопротивление большой величины и уменьшить потери мощности.

Схема на рис. 5 имеет тот недостаток, что ток нагрузки проходит через дополнительный диод VD п , на котором бесполезно теряется часть выпрямленного напряжения. Этот недостаток можно устранить, если подключить пусковое сопротивление R п к отдельному выпрямителю. Схема с отдельным выпрямителем управления, от которого питается схема запуска и пусковое сопротивление R п приведена на рис. 6. В этой схеме диоды выпрямителя управления могут быть маломощными т. к. ток нагрузки протекает только через силовой выпрямитель.


Рис. 6.

Низковольтные источники питания с тиристорным регулятором

Ниже приводится описание нескольких конструкций низковольтных выпрямителей с тиристорным регулятором. При их изготовлении я взял за основу схему тиристорного регулятора, применяемого в устройствах для заряда автомобильных аккумуляторов (см. рис. 7). Эта схема успешно применялась моим покойным товарищем А. Г. Спиридоновым.


Рис. 7.

Элементы, обведенные на схеме (рис. 7), устанавливались на небольшой печатной плате. В литературе описано несколько подобных схем, отличия между ними минимальны, в основном, типами и номиналами деталей. В основном отличия такие:

1. Применяют времязадающие конденсаторы разной емкости, т. е. вместо 0.5 m F ставят 1 m F , и, соответственно, переменное сопротивление другой величины. Для надежности запуска тиристора в своих схемах я применял конденсатор на 1 m F .

2. Параллельно времязадающему конденсатору можно не ставить сопротивление (3 k W на рис. 7). Понятно, что при этом может потребоваться переменное сопротивление не на 15 k W , а другой величины. Влияние сопротивления, параллельного времязадающему конденсатору на устойчивость работы схемы я пока не выяснил.

3. В большинстве описанных в литературе схем применяются транзисторы типов КТ315 и КТ361. Порою они выходят из строя, поэтому в своих схемах я применял более мощные транзисторы типов КТ816 и КТ817.

4. К точке соединения базы pnp и коллектора npn транзисторов может быть подключен делитель из сопротивлений другой величины (10 k W и 12 k W на рис. 7).

5. В цепи управляющего электрода тиристора можно установить диод (см. на схемах, приведенных ниже). Этот диод устраняет влияние тиристора на схему управления.

Схема (рис. 7) приведена для примера, несколько подобных схем с описаниями можно найти в книге “Зарядные и пуско-зарядные устройства: Информационный обзор для автолюбителей / Сост. А. Г. Ходасевич, Т. И. Ходасевич -М.:НТ Пресс, 2005”. Книга состоит из трех частей, в ней собраны чуть ли не все зарядные устройства за историю человечества.

Простейшая схема выпрямителя с тиристорным регулятором напряжения приведена на рис. 8.


Рис. 8.

В этой схеме использован двухполупериодный выпрямитель со средней точкой т. к. в ней содержится меньше диодов, поэтому нужно меньше радиаторов и выше КПД. Силовой трансформатор имеет две вторичные обмотки на переменное напряжение 15 V . Схема управления тиристором здесь состоит из конденсатора С1, сопротивлений R 1- R 6, транзисторов VT 1 и VT 2, диода VD 3.

Рассмотрим работу схемы. Конденсатор С1 заряжается через переменное сопротивление R 2 и постоянное R 1. Когда напряжение на конденсаторе C 1 превысит напряжение в точке соединения сопротивлений R 4 и R 5, открывается транзистор VT 1. Коллекторный ток транзистора VT 1 открывает VT 2. В свою очередь, коллекторный ток VT 2 открывает VT 1. Таким образом, транзисторы лавинообразно открываются и происходит разряд конденсатора C 1 в управляющий электрод тиристора VS 1. Так получается запускающий импульс. Изменяя переменным сопротивлением R 2 время задержки запускающего импульса, можно регулировать выходное напряжение схемы. Чем больше это сопротивление, тем медленнее происходит заряд конденсатора C 1, больше время задержки запускающего импульса и ниже выходное напряжение на нагрузке.

Постоянное сопротивление R 1, включенное последовательно с переменным R 2 ограничивает минимальное время задержки импульса. Если его сильно уменьшить, то при минимальном положении переменного сопротивления R 2 выходное напряжение будет скачком исчезать. Поэтому R 1 подобрано таким образом чтобы схема устойчиво работала при R 2 в положении минимального сопротивления (соответствует наибольшему выходному напряжению).

В схеме использовано сопротивление R 5 мощностью 1 W только потому, что оно попалось под руку. Вероятно вполне достаточно будет установить R 5 мощностью 0.5 W .

Сопротивление R 3 установлено для устранения влияния наводок на работу схемы управления. Без него схема работает, но чувствительна, например, к прикосновению к выводам транзисторов.

Диод VD 3 устраняет влияние тиристора на схему управления. На опыте я проверил и убедился что с диодом схема работает устойчивее. Короче, не нужно скупиться, проще поставить Д226, коих запасы неисчерпаемы исделать надежно работающее устройство.

Сопротивление R 6 в цепи управляющего электрода тиристора VS 1 повышает надежность его работы. Иногда это сопротивление ставят большей величины или не ставят вовсе. Схема без него обычно работает, но тиристор может самопроизвольно открываться под действием помех и утечек в цепи управляющего электрода. Я установил R 6 величиной 51 W как рекомендовано в справочных данных тиристоров КУ202.

Сопротивление R 7 и диод VD 4 обеспечивают надежный запуск тиристора при малом времени задержки запускающего импульса (см. рис. 5 и пояснения к нему).

Конденсатор C 2 сглаживает пульсации напряжения на выходе схемы.

В качестве нагрузки при опытах регулятором использовалась лампа от автомобильной фары.

Схема с отдельным выпрямителем для питания цепей управления и запуска тиристора приведена на рис. 9.


Рис. 9.

Достоинством данной схемы является меньшее число силовых диодов, требующих установки на радиаторы. Заметим, что диоды Д242 силового выпрямителя соединены катодами и могут быть установлены на общий радиатор. Анод тиристора соединенный с его корпусом подключен к “минусу” нагрузки.

Монтажная схема этого варианта управляемого выпрямителя приведена на рис. 10.


Рис. 10.

Для сглаживания пульсаций выходного напряжения может быть применен LC -фильтр. Схема управляемого выпрямителя с таким фильтром приведена на рис. 11.


Рис. 11.

Я применил именно LC -фильтр по следующим соображениям:

1. Он более устойчив к перегрузкам. Я разрабатывал схему для лабораторного источника питания, поэтому перегрузки его вполне возможны. Замечу, что даже если сделать какую-либо схему защиты, то у нее будет некоторое время срабатывания. За это время источник питания не должен выходить из строя.

2. Если сделать транзисторный фильтр, то на транзисторе обязательно будет падать некоторое напряжение, поэтому КПД будет низкий, а транзистору может потребоваться радиатор.

В фильтре использован серийный дроссель Д255В.

Рассмотрим возможные модификации схемы управления тиристором. Первая из них показана на рис. 12.


Рис. 12.

Обычно времязадающую цепь тиристорного регулятора делают из включенных последовательно времязадающего конденсатора и переменного сопротивления. Иногда удобно построить схему так, чтобы один из выводов переменного сопротивления был подключен к “минусу” выпрямителя. Тогда можно включить переменное сопротивление параллельно конденсатору, как сделано на рисунке 12. Когда движок находится в нижнем по схеме положении, основная часть тока, проходящего через сопротивление 1.1 k W поступает во времязадающий конденсатор 1 m F и быстро заряжает его. При этом тиристор запускается на “макушках” пульсаций выпрямленного напряжения или немного раньше и выходное напряжение регулятора получается наибольшим. Если движок находится в верхнем по схеме положении, то времязадающий конденсатор закорочен и напряжение на нем никогда не откроет транзисторы. При этом выходное напряжение будет равно нулю. Меняя положение движка переменного сопротивления, можно изменять силу тока, заряжающего времязадающий конденсатор и, таким образом, время задержки запускающих импульсов.

Иногда требуется производить управление тиристорным регулятором не при помощи переменного сопротивления, а от какой-нибудь другой схемы (дистанционное управление, управление от вычислительной машины). Бывает, что детали тиристорного регулятора находятся под большим напряжением и непосредственное присоединение к ним опасно. В этих случаях вместо переменного сопротивления можно использовать оптрон.


Рис. 13.

Пример включения оптрона в схему тиристорного регулятора показан на рис. 13. Здесь используется транзисторный оптрон типа 4 N 35. База его фототранзистора (вывод 6) соединена через сопротивление с эмиттером (вывод 4). Это сопротивление определяет коэффициент передачи оптрона, его быстродействие и устойчивость к изменениям температуры. Автор испытал регулятор с указанным на схеме сопротивлением 100 k W , при этом зависимость выходного напряжения от температуры оказалась ОТРИЦАТЕЛЬНОЙ, т. е. при очень сильном нагреве оптрона (оплавилась полихлорвиниловая изоляция проводов) выходное напряжение уменьшалось. Вероятно, это связано с уменьшением отдачи светодиода при нагреве. Автор благодарит С. Балашова за советы по использованию транзисторных оптронов.


Рис. 14.

При регулировке схемы управления тиристором иногда бывает полезна подстройка порога срабатывания транзисторов. Пример такой подстройки показан на рис. 14.

Рассмотрим также пример схемы с тиристорным регулятором на большее напряжение (см. рис. 15). Схема питается от вторичной обмотки силового трансформатора ТСА-270-1, дающей переменное напряжение 32 V . Номиналы деталей, указанные на схеме, подобраны под это напряжение.


Рис. 15.

Схема на рис. 15 позволяет плавно регулировать выходное напряжение от 5 V до 40 V , что достаточно для большинства устройств на полупроводниковых приборах, таким образом, эту схему можно взять за основу при изготовлении лабораторного источника питания.

Недостатком этой схемы является необходимость рассеивать достаточно большую мощность на пусковом сопротивлении R 7. Понятно, что чем меньше ток удержания тиристора, тем больше может быть величина и меньше мощность пускового сопротивления R 7. Поэтому здесь предпочтительно использовать тиристоры с малым током удержания.

Кроме обычных тиристоров в схеме тиристорного регулятора может быть использован оптотиристор. На рис. 16. приведена схема с оптотиристором ТО125-10.


Рис. 16.

Здесь оптотиристор просто включен вместо обычного, но т.к. его фототиристор и светодиод изолированы друг от друга, схемы его применения в тиристорных регуляторах могут быть и другими. Заметим, что благодаря малому току удержания тиристоров ТО125 пусковое сопротивление R 7 требуется менее мощное, чем в схеме на рис. 15. Поскольку автор опасался повредить светодиод оптотиристора большими импульсными токами, в схему было включено сопротивление R6. Как оказалось, схема работает и без этого сопротивления, причем без него схема лучше работает при низких напряжениях на выходе.

Высоковольтные источники питания с тиристорным регулятором

При разработке высоковольтных источников питания с тиристорным регулятором за основу была взята схема управления оптотиристором, разработанная В. П. Буренковым (ПРЗ) для сварочных аппаратов.Для этой схемы разработаны и выпускаются печатные платы. Автор выражает благодарность В. П. Буренкову за образец такой платы. Схема одного из макетов регулируемого выпрямителя с использованием платы конструкции Буренкова приведена на рис. 17.


Рис. 17.

Детали, установленные на печатной плате обведены на схеме пунктиром. Как видно из рис. 16, на плате установлены гасящие сопротивления R 1 и R 2, выпрямительный мост VD 1 и стабилитроны VD 2 и VD 3. Эти детали предназначены для питания от сети 220 V . Чтобы испытать схему тиристорного регулятора без переделок в печатной плате, использован силовой трансформатор ТБС3-0,25У3, вторичная обмотка которого подключена таким образом, что с нее снимается переменное напряжение 200 V , т. е. близкое к нормальному питающему напряжению платы. Схема управления работает аналогично описанным выше, т. е. конденсатор С1 заряжается через подстроечное сопротивление R 5 и переменное сопротивление (установлено вне платы) до того момента, пока напряжение на нем не превысит напряжение на базе транзистора VT 2, после чего транзисторы VT 1 и VT2 открываются и происходит разряд конденсатора С1 через открывшиеся транзисторы и светодиод оптронного тиристора.

Достоинством данной схемы является возможность подстройки напряжения, при котором открываются транзисторы (при помощи R 4), а также минимального сопротивления во времязадающей цепи (при помощи R 5). Как показывает практика, иметь возможность такой подстройки весьма полезно, особенно если схема собирается в любительских условиях из случайных деталей. При помощи подстроечных сопротивлений R4 и R5 можно добиться регулировки напряжения в широких пределах и устойчивой работы регулятора.

С этой схемы я начинал свои ОКР по разработке тиристорного регулятора. В ней же и был обнаружен пропуск запускающих импульсов при работе тиристора на емкостную нагрузку (см. рис. 4). Желание повысить стабильность работы регулятора привело к появлению схемы рис. 18. В ней автор опробовал работу тиристора с пусковым сопротивлением (см. рис 5.


Рис. 18.

В схеме рис. 18. использована та же плата, что и в схеме рис. 17, только с нее удален диодный мост, т.к. здесь используется один общий для нагрузки и схемы управления выпрямитель. Заметим, что в схеме на рис. 17 пусковое сопротивление подобрано из нескольких параллельно включенных чтобы определить максимально возможное значение этого сопротивления, при котором схема начинает устойчиво работать. Между катодом оптотиристора и конденсатором фильтра включено проволочное сопротивление 10 W . Оно нужно для ограничения бросков тока через опторитистор. Пока это сопротивление не было установлено, после поворота ручки переменного сопротивления оптотиристор пропускал в нагрузку одну или несколько целых полуволн выпрямленного напряжения.

На основании проведенных опытов была разработана схема выпрямителя с тиристорным регулятором, пригодная для практического использования. Она приведена на рис. 19.


Рис. 19.


Рис. 20.

Печатная плата SCR 1 M 0 (рис. 20) разработана для установки на нее современных малогабаритных электролитических конденсаторов и проволочных сопротивлений в керамическом корпусе типа SQP . Автор выражает благодарность Р. Пеплову за помощь с изготовлением и испытанием этой печатной платы.

Поскольку автор разрабатывал выпрямитель с наибольшим выходным напряжением 500 V , потребовалось иметь некоторый запас по выходному напряжению на случай снижения напряжения сети. Увеличить выходное напряжение оказалось возможным если пересоединить обмотки силового трансформатора, как показано на рис. 21.

Рис. 21.

Замечу также, что схема рис. 19 и плата рис. 20 разработаны с учетом возможности их дальнейшего развития. Для этого на плате SCR 1 M 0 имеются дополнительные выводы от общего провода GND 1 и GND 2, от выпрямителя DC 1

Разработка и налаживание выпрямителя с тиристорным регулятором SCR 1 M 0 проводились совместно со студентом Р. Пеловым в ПГУ. C его помощью были сделаны фотографии модуля SCR 1 M 0 и осциллограмм.


Рис. 22. Вид модуля SCR 1 M 0 со стороны деталей


Рис. 23. Вид модуля SCR 1 M 0 со стороны пайки


Рис. 24. Вид модуля SCR 1 M 0 сбоку

Таблица 1. Осциллограммы при малом напряжении

№ п/п

Минимальное положение регулятора напряжения

По схеме

Примечания

На катоде VD5

5 В/дел

2 мс/дел

На конденсаторе C1

2 В/дел

2 мс/дел

т.соединения R2 и R3

2 В/дел

2 мс/дел

На аноде тиристора

100 В/дел

2 мс/дел

На катоде тиристора

50 В/дел

2 мс/де


Таблица 2. Осциллограммы при среднем напряжении

№ п/п

Среднее положение регулятора напряжения

По схеме

Примечания

На катоде VD5

5 В/дел

2 мс/дел

На конденсаторе C1

2 В/дел

2 мс/дел

т.соединения R2 и R3

2 В/дел

2 мс/дел

На аноде тиристора

100 В/дел

2 мс/дел

На катоде тиристора

100 В/дел

2 мс/дел

Таблица 3. Осциллограммы при максимальном напряжении

№ п/п

Максимальное положение регулятора напряжения

По схеме

Примечания

На катоде VD5

5 В/дел

2 мс/дел

На конденсаторе C1

1 В/дел

2 мс/дел

т.соединения R2 и R3

2 В/дел

2 мс/дел

На аноде тиристора

100 В/дел

2 мс/дел

На катоде тиристора

100 В/дел

2 мс/дел

Чтобы избавиться от этого недостатка схема регулятора была изменена. Было установлено два тиристора – каждый на свой полупериод. С этими изменениями схема испытывалась несколько часов и “выбросов” замечено не было.

Рис. 25. Схема SCR 1 M 0 с доработками

Тиристорные регуляторы мощности применяются как в быту (в аналоговых паяльных станциях, электронагревательных приборах и т.д.), так и на производстве (например, для запуска мощных силовых установок). В бытовых приборах, как правило, устанавливаются однофазные регуляторы, в промышленных установках чаще применяются трехфазные.

Эти устройства представляют собой электронную схему, работающую по принципу фазового регулирования, для управления мощностью в нагрузке (подробнее об этом методе будет рассказано ниже).

Принцип работы фазового регулирования

Принцип регулирования данного типа заключается в том, что импульс, открывающий тиристор, имеет определенную фазу. То есть, чем дальше он располагается от конца полупериода, тем большей амплитуды будет напряжение, поступающее на нагрузку. На рисунке ниже мы видим обратный процесс, когда импульсы поступают практически под окончание полупериода.

На графике показано время, когда тиристор закрыт t1 (фаза управляющего сигнала), как видите он открывается практически под конец полупериода синусоиды, в результате амплитуда напряжения минимальна, а следовательно, мощность в подключенной к прибору нагрузке будет незначительной (близкой к минимальной). Рассмотрим случай, представленный на следующем графике.


Здесь мы видим, что импульс, открывающий тиристор, приходится на середину полупериода, то есть регулятор будет выдавать половинную мощность от максимально возможной. Работа на мощности, близкой к максимальной, отображена на следующем графике.


Как видно из графика, импульс приходится на начало синусоидального полупериода. Время, когда тиристор находится в закрытом состоянии (t3) – незначительное, поэтому в данном случае мощность в нагрузке приближается к максимальной.

Заметим, что трехфазные регуляторы мощности работают по такому же принципу, но они управляют амплитудой напряжения не в одной, а сразу в трех фазах.

Такой метод регулирования прост в реализации и позволяет точно изменять амплитуду напряжения в диапазоне от 2 до 98 процентов от номинала. Благодаря этому становится возможным плавное управление мощностью электроустановок. Основной недостаток устройств данного типа – создание высокого уровня помех в электросети.

В качестве альтернативы, позволяющей сократить помехи, можно переключать тиристоры, когда синусоида переменного напряжения проходит через ноль. Наглядно работу такого регулятора мощности можно посмотреть на следующем графике.


Обозначения:

  • A – график полуволн переменного напряжения;
  • B – работа тиристора при 50% от максимальной мощности;
  • C – график, отображающий работу тиристора при 66%;
  • D – 75% от максимума.

Как видно из графика, тиристор «отрезает» полуволны, а не их части, что минимизирует уровень помех. Недостаток такой реализации – невозможность плавного регулирования, но для нагрузки с большой инерционностью (например, различных нагревательных элементов) этот критерий не основной.

Видео: Испытания тиристорного регулятора мощности

Схема простого регулятора мощности

Регулировать мощность паяльника можно используя для этой цели аналоговые или цифровые паяльные станции. Последние стоят достаточно дорого, и собрать их, не имея опыта, не просто. В то время как аналоговые устройства (являющиеся по сути регуляторами мощности) не составит труда сделать своими руками.

Приведем несложную схему прибора на тиристорах, благодаря которому можно регулировать мощность паяльника.


Радиоэлементы, обозначенные на схеме:

  • VD – КД209 (или близкий ему по характеристикам)
  • VS- KУ203В или его аналог;
  • R 1 – сопротивление с номиналом 15кОм;
  • R 2 – резистор переменного типа 30кОм;
  • С –емкость электролитического типа ч номиналом 4,7мкФ и напряжением от 50В;
  • R n – нагрузка (в нашем случае в качестве нее выступает паяльник).

Данное устройство регулирует только положительный полупериод, поэтому минимальная мощность паяльника будет вполовину меньше номинальной. Управляется тиристор через цепь, включающую в себя два сопротивления и емкость. Время зарядки конденсатора (оно регулируется сопротивлением R 2) влияет на длительность «открытия» тиристора. Ниже показан график работы устройства.


Пояснение к рисунку:

  • график A – показывает синусоиду переменного напряжения, поступающего на нагрузку Rn (паяльник) при сопротивлении R2 близком к 0 кОм;
  • график B – отображает амплитуду синусоиды поступающего на паяльник напряжения при сопротивлении R2 равном 15 кОм;
  • график C, как видно из него, при максимальном сопротивлении R2 (30 кОм) время работы тиристора (t 2) становится минимальным, то есть паяльник работает с мощностью примерно около 50% от номинальной.

Схема устройства довольно простая, поэтому собрать ее самостоятельно смогут даже те, кто не очень хорошо разбирается в схемотехнике. Необходимо предупредить, что при работе данного прибора в его цепи присутствует опасное для жизни человека напряжение, поэтому все его элементы должны быть надежно заизолированы.

Как уже описывалось выше, устройства, работающие по принципу фазового регулирования, являются источником сильных помех в электросети. Существует два варианта выхода из подобной ситуации:


Регулятор работающий без помех

Ниже представлена схема регулятора мощности, не создающего помехи, поскольку он не «обрезает» полуволны, а «отрезает» их определенное количество. Принцип работы такого устройства мы рассматривали в разделе «Принцип работы фазового регулирования», а именно, переключение тиристора через ноль.

Также как и в предыдущей схеме, регулировка мощности происходит в диапазоне от 50 процентов до величины близкой к максимальной.


Перечень используемых в приборе радиоэлементов, а также варианты их замены:

Тиристор VS – КУ103В;

Диоды:

VD 1 -VD 4 – КД209 (в принципе можно использовать любые аналоги, которые допускают величину обратного напряжения более 300В, а ток свыше 0,5А); VD 5 и VD 7 – КД521 (допускается ставить любой диод импульсного типа); VD 6 – KC191 (можно использовать аналог с напряжением стабилизации равным 9В)

Конденсаторы:

С 1 – электролитического типа с емкостью 100мкФ, рассчитанный на напряжение не менее 16В; С 2 – 33Н; С 3 – 1мкФ.

Резисторы:

R 1 и R 5 – 120кОм; R 2 -R 4 – 12кОм; R 6 – 1кОм.

Микросхемы:

DD1 – K176 ЛЕ5 (или ЛА7); DD2 –K176TM2. В качестве альтернативы можно использовать логику серии 561;

R n – паяльник, подключенный в качестве нагрузки.

Если при сборке тиристорного регулятора мощности не было допущено ошибок, то устройство начинает работать сразу после включения, настройка для него не требуется. Имея возможность измерить температуру жала паяльника, можно сделать градацию шкалы для резистора R 5 .

В том случае, когда устройство не заработало, рекомендуем проверить правильность распайки радиоэлементов (не забудьте перед этим отключить его от сети).

Практически в любом радиоэлектронном устройстве в большинстве случаев присутствует регулировка по мощности. За примерами далеко ходить не надо: это электроплиты, кипятильники, паяльные станции, различные регуляторы вращения двигателей в устройствах.

Способов, по которым можно собрать регулятор напряжения своими руками 220 В, в Сети полно. В большинстве случаев это схемы на симисторах или тиристорах. Тиристор, в отличие от симистора, более распространённый радиоэлемент, и схемы на его основе встречаются гораздо чаще. Разберём разные варианты исполнения, основанные на обоих полупроводниковых элементах.

Симистор, по большому счету , - это частный случай тиристора, пропускающий ток в обе стороны, при условии, что он выше тока удержания. Один из его недостатков - это плохая работа на высоких частотах. Поэтому его часто используют в низкочастотных сетях. Для построения регулятора мощности на основе обычной сети 220 В, 50 Гц он вполне подходит.

Регулятор напряжения на симисторе используется в обычных бытовых приборах, где нужна регулировка. Схема регулятора мощности на симисторе выглядит следующим образом.

  • Пр. 1 - предохранитель (выбирается в зависимости от требуемой мощности).
  • R3 - токоограничительный резистор - служит для того чтобы при нулевом сопротивлении потенциометра остальные элементы не выгорели.
  • R2 - потенциометр, подстроечный резистор, которым и осуществляется регулировка.
  • C1 - основной конденсатор, заряд которого до определённого уровня отпирает динистор, вместе с R2 и R3 образует RC-цепь
  • VD3 - динистор, открытие которого управляет симистором.
  • VD4 - симистор - главный элемент, производящий коммутацию и, соответственно, регулировку.

Основная работа возложена на динистор и симистор. Сетевое напряжение подаётся на RC-цепочку, в которой установлен потенциометр, им в итоге и регулируется мощность. Производя регулировку сопротивления, мы меняем время зарядки конденсатора и тем самым порог включения динистора, который, в свою очередь, включает симистор. Демпферная RC-цепь, подключённая параллельно симистору, служит для сглаживания помех на выходе, а также при реактивной нагрузке (двигатель или индуктивность) предохраняет симистор от скачков высокого обратного напряжения.

Симистор включается, когда ток, проходящий через динистор, превышает ток удержания (справочный параметр). Отключается, соответственно, когда ток становится меньше тока удержания . Проводимость в обе стороны позволяет настроить более плавную регулировку, чем это возможно, например, на одном тиристоре, при этом используется минимум элементов.

Осциллограмма регулировки мощности представлена ниже. Из неё видно, что после включения симистора оставшаяся полуволна поступает на нагрузку и при достижении 0, когда ток удержания уменьшается до такой степени, что симистор отключается. Во втором «отрицательном» полупериоде происходит тот же процесс, т. к. симистор обладает проводимостью в обе стороны.

Напряжение на тиристоре

Для начала разберёмся, чем отличается тиристор от симистора. Тиристор содержит в себе 3 p-n перехода, а симистор - 5 p-n переходов. Не углубляясь в детали, если говорить простым языком, симистор обладает проводимостью в обоих направлениях, а тиристор - только в одном. Графические обозначения элементов показаны на рисунке. Из графики это хорошо видно .

Принцип работы абсолютно такой же. На чём и построена регулировка по мощности в любой схеме. Рассмотрим несколько схем регулятора на тиристорах. Первая простейшая схема, которая в основе повторяет схему на симисторе, описанную выше. Вторая и третья - с применением логики, схемы, которые более качественно гасят помехи, создаваемые в сети переключением тиристоров.

Простая схема

Простая схема фазового регулирования на тиристоре представлена ниже .

Единственное её отличие от схемы на симисторе - это то, что регулировка происходит только положительной полуволны сетевого напряжения. Времязадающая RC-цепь путём регулирования величины сопротивления потенциометра регулирует величину отпирания, тем самым задавая выходную мощность, поступающую на нагрузку. На осциллограмме это выглядит следующим образом.

Из осциллограммы видно, что регулировка мощности идёт путём ограничения напряжения поступающего на нагрузку. Образно говоря, регулировка заключается в ограничении поступления сетевого напряжения на выход. Регулируя время заряда конденсатора путём изменения переменного сопротивления (потенциометра). Чем выше сопротивление, тем дольше происходит заряд конденсатора и тем меньше мощности будет передано на нагрузку. Физика процесса подробно описана в предыдущей схеме. В этом случае она ничем особым не отличается.

С генератором на основе логики

Второй вариант более сложный. В связи с тем, что процессы коммутации на тиристорах вызывают большие помехи в сети, это плохо влияет на элементы, установленные на нагрузке. Особенно если на нагрузке находится сложный прибор с тонкими настройками и большим количеством микросхем.

Такая реализация тиристорного регулятора мощности своими руками подойдёт для активных нагрузок, например, паяльник или любые устройства нагрева. На входе стоит выпрямительный мост, поэтому обе волны сетевого напряжения будут положительными. Обратите внимание, что при такой схеме для питания микросхем понадобиться дополнительный источник постоянного напряжения +9 В. Осциллограмма из-за наличия выпрямительного моста будет выглядеть следующим образом.

Обе полуволны теперь будут положительными из-за влияния выпрямительного моста. Если для реактивных нагрузок (двигатели и другие индуктивные нагрузки) наличие разно полярных сигналов предпочтительно, то для активных - положительное значение мощности крайне важно. Отключение тиристора происходит также при приближении полуволны к нулю ток удержания подаёт до определённого значения и тиристор запирается.

На основе транзистора КТ117

Наличие дополнительного источника постоянного напряжение может вызвать затруднения, если его нет, и вовсе придётся городить дополнительную схему. Если дополнительного источника у вас нет, то можно воспользоваться следующей схемой, в ней генератор сигналов на управляющий вывод тиристора собран на обычном транзисторе. Есть схемы на основе генераторов, построенных на комплементарных парах, но они более сложные, и здесь мы их рассматривать не будем.

В данной схеме генератор построен на двухбазовом транзисторе КТ117, который при таком применении будет генерировать управляющие импульсы с периодичностью, задаваемой подстроечным резистором R6. На схеме ещё реализована система индикации на базе светодиода HL1.

  • VD1-VD4 - диодный мост, выпрямляющий обе полуволны и позволяющий выполнять более плавную регулировку мощности.
  • EL1 - лампа накаливания - представлена вроде нагрузки, но может быть любой другой прибор.
  • FU1 - предохранитель, в этом случае стоит на 10 А.
  • R3, R4 - токоограничительные резисторы - нужны, чтобы не сжечь схему управления.
  • VD5, VD6 - стабилитроны - выполняют роль стабилизации напряжения определённого уровня на эмиттере транзистора.
  • VT1 - транзистор КТ117 - установлен должен быть именно с таким расположение базы №1 и базы №2, иначе схема будет не работоспособна.
  • R6 - подстроечный резистор, определяющий момент, когда поступает импульс на управляющий вывод тиристора.
  • VS1 - тиристор - элемент, обеспечивающий коммутацию.
  • С2 - времязадающий конденсатор, определяющий период появления управляющего сигнала.

Остальные элементы играют незначительную роль и в основном служат для токоограничения и сглаживания импульсов. HL1 обеспечивает индикацию и сигнализирует только о том, что прибор подключён к сети и находится под напряжением.

В статье стоит раскрыть тему того, как совершает работу тиристорный регулятор напряжения, схему которого можно более подробно осмотреть в интернете.

В повседневной жизни в большинстве случаев может развиться особая необходимость в регулировании общей мощности бытовых приборов, к примеру, электроплит, паяльника, кипятильника, а также ТЭНов, на транспорте - оборотов двигателя и прочего. В этом случае на помощь нам придёт простая и радиолюбительская конструкция - это особый регулятор мощности на тиристоре.

Создать такое устройство не составит особого труда, оно может стать тем первым самодельным прибором, который будет выполнять функцию регулировки температуры жала в паяльнике у любого начинающего радиолюбителя. Нужно отметить и тот факт, что готовые паяльники на станции с общим контролем температуры и остальными особенными функциями стоят намного больше, чем самые простые модели паяльников. Минимальное число деталей в конструкции поможет собрать несложный тиристорный регулятор мощности с навесным монтажом.

Следует отметить, что навесной тип монтажа - это вариант осуществления сборки радиоэлектронных компонентов без использования при этом специальной печатной платы, а при качественном навыке он помогает быстро собрать электронные устройства со средней сложностью производства.

Также вы можете заказать электронный тип конструктора тиристорного типа регулятора, а тот, кто хочет полностью разобраться во всём самостоятельно, должен изучить некоторые схемы и принцип функционирования прибора.

Между прочим, такое устройство является регулятором общей мощности . Такое устройство может быть применимо для управления общей мощностью либо управлением числа оборотов. Но для начала нужно полностью разобраться в общем принципе функционирования такого устройства, ведь это поможет понять, на какую нагрузку стоит рассчитывать при использовании такого регулятора.

Как совершает свою работу тиристор?

Тиристор - это управляемый полупроводниковый прибор, который способен быстро провести ток в одну сторону. Слово управляемый обозначает тиристор не просто так, так как с его помощью, в отличие от диода, который также проводит общий ток лишь к одному полюсу, можно выбирать отдельный момент, когда тиристор начнёт процесс проведения тока.

Тиристор обладает сразу тремя выводами тока:

  1. Катод.
  2. Анод.
  3. Управляемый электрод.

Чтобы осуществить течение тока через такой тиристор, стоит выполнить следующие условия: деталь обязана в обязательном порядке расположена на самой цепи, которая будет находиться под общим напряжением, на управляющую часть электрода должен быть подан нужный кратковременный импульс. В отличие от транзистора, управление таким тиристор не будет требовать от пользователя удержания управляющего сигнала.

Но в этом все трудности использования такого прибора заканчиваться не будут: тиристор можно легко закрыть, если прервать поступление в него тока по цепи, либо создав обратное напряжение анод - катод. Это будет значить то, что применение тиристора в цепях постоянного тока считается довольно специфичным и в большинстве случаев полностью неблагоразумно, а в цепях переменного, к примеру, в таком устройстве как тиристорный регулятор, схема создана таким методом, чтобы было полностью обеспечено условие для закрытия прибора. Любая данная полуволна будет полностью закрывать соответствующий отдел тиристора.

Вам, скорее всего, сложно понять схему его строения . Но, не нужно расстраиваться - ниже будет более подробно описан процесс функционирования такого устройства.

Область использования тиристорных устройств

В каких целях можно использовать такое устройство, как регулятор мощности тиристор. Такой прибор позволяет более эффективно регулировать мощность нагревательных приборов, то есть осуществлять нагрузку на активные места. Во время работы с высокоиндуктивной нагрузкой тиристоры способны просто не закрыться, что может приводить к выходу такого оборудования из нормальной работы.

Можно ли самостоятельно осуществить регулирование оборотов в двигателе прибора?

Многие из пользователей, которые видели или даже на практике применяли дрели, углошлифовальные машины, которые по-другому называются болгарками, и другими электроинструментами. Они могли легко увидеть, что число оборотов в таких изделиях зависит, главным образом, от общей глубины нажатия на кнопку-курок в устройстве . Такой элемент как раз и будет находиться в тиристорном регуляторе мощности (общая схема такого прибора указана в интернете), при помощи которого и происходит изменение общего числа оборотов.

Стоит обратить своё внимание на то, что регулятор не может самостоятельно менять свои обороты в асинхронных двигателях. Таким образом, напряжение будет полноценно регулироваться на коллекторном двигателе, который оборудован специальным щелочным узлом.

Как работает такое устройство?

Описанные ниже характеристики будет соответствовать большинству схем .

При этом происходит определённая область, которая будет находиться под особым напряжением. Когда воздействие положительной полуволны окончится и начнётся новый период движения с отрицательно полуволной, то один из таких тиристоров начнёт закрываться, и в это же время откроется новый тиристор.

Вместо слов положительная и отрицательная волна стоит использовать первая и вторая (полуволна).

В то время как на схему начинает своё воздействие первая полуволна, происходит особая зарядка ёмкости С1, а также С2 . Скорость их полной зарядки будет ограничена потенциометром R 5. Такой элемент будет полностью переменным, и при его помощи будет задаваться выходное напряжение. В тот момент, когда на поверхности конденсатора С1 появится нужное для открытия диристора VS 3 напряжения, весь динистор откроется, а через него начнёт проходить ток, при помощи которого откроется тиристор VS 1.

Во время пробоя динистра и образуется точка на общем графике. После того как значение напряжение перейдёт нулевую отметку, и схема будет находиться под воздействием второй полуволны, тиристор VS 1, закроется, а процесс будет повторяться, только уже для второго динистра, тиристора, а также конденсатора. Резисторы R 3 и R 3 нужны для ограничения общего тока управления, а R 1 и R 2 - для процесса термостабилизации всей схемы.

Принцип действия второй схемы будет точно такой же, но в ней будет происходить управление лишь одной из полуволн переменного тока. После того, как пользователь будет понимать принцип работы устройства и его общую схему строение, он сможет понять как собрать или же в случае необходимости починить тиристорный регулятор мощности самостоятельно.

Тиристорный регулятор напряжения своими руками

Нельзя сказать о том, что данная схема не обеспечит гальваническую развязку от источника питания, поэтому есть определённая опасность поражения электрическими разрядами тока. Это будет означать то, что не нужно касаться руками элементов регулятора.

Следует спроектировать конструкцию вашего прибора таким образом, чтобы по возможности вы смогли спрятать её в регулируемом устройстве , а также найти более свободное место внутри корпуса. Если регулируемое устройство будет расположено на стационарном уровне, то имеет определённой смысл осуществить его подключение через выключатель с особым регулятором уровня яркости света. Такое решение сможет частично обезопасить человека от поражения током, а также избавит его от необходимости поиска подходящего корпуса у прибора, обладает привлекательным внешним строением, а также создано с использованием промышленных технологий.

Способы регулирования фазового напряжения в сети

На основе принципов и особенностей фазового регулирования напряжения можно построить определённые схемы регулирования, стабилизации, а в отдельных случаях с плавного пуска. Для осуществления более плавного пуска напряжение стоит со временем повышать от нуля до максимального показателя. Таким образом, во время открывания тиристора максимальный показатель значения должен изменяться до отметки нуль.

Схемы на тиристорах

Регулировать общую мощность паяльника можно довольно просто, если использовать для этого аналоговые или же цифровые паяльные станции . Последние довольно дорогие совершать использование, и собрать их, не имея особого опыта, довольно сложно. В то время как аналоговые приборы (считаются по своей сути регуляторами общей мощности) не составит труда создать самостоятельно.

Довольно простая схема прибора, которая поможет регулировать показатель мощности на паяльнике.

  1. VD - КД209 (либо близкие по его общим характеристикам).
  2. R 1 - сопротивление с особым номиналом в 15 кОм.
  3. R 2 - это резистор, который обладает особым показателем переменного тока около 30 кОм.
  4. Rn - это общая нагрузка (в этом случае вместо неё будет использован особый маятник).

Такое устройство для регуляции может контролировать не только положительный полупериод, по этой причине мощность паяльника будет в несколько раз меньше номинальной. Управляется такой тиристор с помощью специальной цепи, которая несёт в себе два сопротивления, а также ёмкость. Время зарядки конденсата (оно будет регулироваться особым сопротивлением R2) влияет на длительность открытия такого тиристора.