Расположение микротрубочек 9 2. Основные функции микротрубочек клетки. Микротрубочки, тонкое строение, молекулярная организация

С появлением электронного микроскопа быстро выяснилось, что цитоплазма клетки организована гораздо сложнее, чем предполагалось ранее, и что между органеллами, окруженными мембраной, и мелкими органеллами вроде рибосом и центриолей существует четкое разделение труда. Позже удалось выявить и еще более тонкую структуру в матриксе цитоплазмы, который до того представлялся совсем бесструктурным. Здесь была обнаружена сложная сеть фибрилл. Среди них можно было различить по меньшей мере три типа: микротрубочки, микрофиламенты и промежуточные филаменты. Их функции связаны с движением клеток или с внутриклеточным движением, а также со способностью клеток поддерживать свою форму.

Микротрубочки

Почти во всех эукариотических клетках содержатся полые цилиндрические неразветвленные органеллы, называемые микротрубочками . Это очень тонкие трубочки диаметром приблизительно 24 нм; их стенки толщиной около 5 нм построены из спирально упакованных глобулярных субъединиц белка тубулина (рис. 7.24). Рис. 7.21 дает представление о том, как выглядят микротрубочки на электронных микрофотографиях. В длину они могут достигать нескольких микрометров. Иногда от их стенок через определенные промежутки отходят выступы, образующие связи или перемычки с соседними микротрубочками, как это можно наблюдать в ресничках и жгутиках. Растут микротрубочки с одного конца путем добавления тубулиновых субъединиц. Этот рост прекращается под влиянием некоторых химических веществ, в частности под влиянием колхицина , который используют при изучении функций микротрубочек. Рост, видимо, может начаться лишь при наличии матрицы; есть основания думать, что роль таких матриц играют какие-то очень мелкие кольцевые структуры, которые были выделены из клеток и которые, как выяснилось, состоят из тубулиновых субъединиц. В животных клетках ту же функцию выполняют, очевидно, и центриоли, в связи с чем их иногда называют центрами организации микротрубочек. Центриоли содержат короткие микротрубочки (рис. 22.3).

Микротрубочки принимают участие в различных внутриклеточных процессах; некоторые мы здесь упомянем.

Центриоли, базальные тельца, реснички и жгутики. Центриоли - это мелкие полые цилиндры (длиной 0,3-0,5 мкм и около 0,2 мкм в диаметре), встречающиеся почти во всех животных клетках и клетках низших растений; они располагаются парами в характерно окрашиваемой области цитоплазмы, известной под названием центросома или центросфера . Каждая центриоль построена из девяти триплетов микротрубочек, как показано на рис. 22.3. В начале деления ядра центриоли удваиваются и две новые пары центриолей расходятся к полюсам веретена - структуры, по экватору которой выстраиваются перед своим расхождением хромосомы (разд. 22.2). Само веретено состоит из микротрубочек, при сборке которых центриоли играют, очевидно, роль центров организации. Микротрубочки регулируют расхождение хроматид или хромосом (гл. 22). В клетках высших растений центриоли отсутствуют, хотя веретено в них при делении ядра образуется. Возможно, что в этих клетках имеются какие-то очень мелкие центры организации микротрубочек, неразличимые даже при помощи электронного микроскопа. Ниже при рассмотрении внутриклеточного транспорта мы коснемся другой возможной функции центриолей в качестве центров организации микротрубочек.

Центриолям по структуре идентичны базальные тельца , именовавшиеся ранее кинетосомами или блефаропластами . Базальные тельца всегда обнаруживаются в основании ресничек и жгутиков. По-видимому, они образуются путем удвоения центриолей, предшествующих базальному тельцу. Вероятно, базальные тельца тоже действуют как центры организации микротрубочек, потому что ресничкам и жгутикам тоже свойственно характерное расположение микротрубочек ("9 + 2"; разд. 17.6 и рис. 17.31).

В веретене, а также в ресничках и жгутиках движение осуществляется за счет скольжения микротрубочек; в первом случае результатом этого скольжения является расхождение хромосом или хроматид, а во втором - биение ресничек или жгутиков. Более подробно эти процессы описаны в гл. 17 и 22.

Внутриклеточный транспорт . Микротрубочки участвуют также в перемещении других клеточных органелл, например пузырьков Гольджи, которые с их помощью направляются к формирующейся клеточной пластинке, как это видно на рис. 7.21. В клетках идет непрерывный транспорт пузырьков Гольджи и наряду с ним транспорт пузырьков, отпочковывающихся от ЭР и перемещающихся к аппарату Гольджи. Цейтраферная съемка позволяет выявить совершающиеся во многих клетках перемещения также и более крупных органелл, например лизосом и митохондрий. Такие перемещения могут быть упорядоченными или неупорядоченными; полагают, что они характерны почти для всех клеточных органелл. Перемещения приостанавливаются, если повреждена система микротрубочек. Сеть микротрубочек в клетках очень отчетливо выявляется с помощью метода иммунофлуоресцентной микроскопии, основанного на присоединении флуоресцентных маркеров к молекулам антител, специфически связывающихся с белком, распределение которого исследуется. Если воспользоваться антителами, специфичными к тубулину, то в световом микроскопе можно получить картину, аналогичную той, какая изображена на рис. 7.25.

Полагают, что микротрубочки расходятся радиально из центросферы, внутри которой располагаются центриоли. Сателлитные белки вокруг центриолей действуют как центры организации микротрубочек.

Цитоскелет . Помимо перечисленных выше функций микротрубочки выполняют в клетках еще и пассивную структурную роль: эти длинные трубчатые, достаточно жесткие структуры образуют опорную систему клетки, своего рода цитоскелет. Они способствуют определению формы клетки в процессе дифференцировки и поддержанию формы дифференцированных клеток; нередко они располагаются в зоне, непосредственно примыкающей к плазматической мембране. В аксонах нервных клеток имеются, например, продольно располагающиеся пучки микротрубочек (возможно, они участвуют также и в транспорте вдоль аксона). Отмечено, что животные клетки, в которых система микротрубочек повреждена, принимают сферическую форму. В растительных клетках расположение микротрубочек соответствует расположению целлюлозных волокон, отлагающихся при построении клеточной стенки; таким образом, микротрубочки косвенно определяют форму клетки.

Микрофиламенты

Микрофиламентами называются очень тонкие белковые нити диаметром 5-7 нм. Недавно было показано, что эти нити, присутствующие в эукариотических клетках в большом количестве, состоят из белка актина , близкого к тому, который содержится в мышцах. Во всех изученных клетках актин составляет 10-15% общего количества клеточного белка. Методом иммунофлуоресцентной микроскопии было установлено, что актиновый цитоскелет сходен с цитоскелетом из микротрубочек (рис. 7.26).

Нередко микрофиламенты образуют сплетения или пучки непосредственно под плазматической мембраной, а также на поверхности раздела между подвижной и неподвижной цитоплазмой (в растительных клетках, где наблюдается циклоз). По-видимому, микрофиламенты участвуют также в эндоцитозе и экзоцитозе. В клетке обнаруживаются также и нити миозина (другого важного мышечного белка), хотя количество их значительно меньше. Взаимодействие актина и миозина лежит в основе сокращения мышц (разд. 17.4). Это обстоятельство наряду с другими данными указывает, что роль микрофиламентов в клетке связана с движением (либо всей клетки в целом, либо отдельных ее структур внутри нее). Правда, движение это регулируется не совсем так, как в мышце, В некоторых случаях функционируют одни только актиновые филаменты, а в других - актин вместе с миозином. Последнее характерно, например, для микроворсинок (разд. 7.2.11). В клетках, которым свойственно движение, сборка и разрушение микрофиламентов идут непрерывно. В качестве последнего примера использования микрофиламентов укажем, что при цитотомии животных клеток они формируют сократительное кольцо.

Промежуточные филаменты

Третью группу структур составляют, как указывалось выше, промежуточные филаменты (8-10 нм в диаметре). Эти филаменты тоже играют роль в движении и участвуют в образовании цитоскелета.

Полярны: на одном конце происходит самосборка микротрубочки, на другом - разборка. В клетках микротрубочки играют роль структурных во многих клеточных процессах.

Строение

Микротрубочки - это структуры, в которых 13 протофиламентов, состоящих из гетеродимеров α- и β-тубулина, уложены по окружности полого цилиндра. Внешний диаметр цилиндра около 25 нм, внутренний - около 15.

Один из концов микротрубочки, называемый плюс-концом, постоянно присоединяет к себе свободный тубулин. От противоположного конца - минус-конца - тубулиновые единицы отщепляются.

β-тубулин

В образовании микротрубочки выделяют три фазы:

  • Замедленная фаза, или нуклеация. Это этап зарождения микротрубочки, когда молекулы тубулина начинают соединяться в более крупные образования. Такое соединение происходит медленнее, чем присоединение тубулина к уже собранной микротрубочке, поэтому фаза и называется замедленной.
  • Фаза полимеризации, или элонгация. Если концентрация свободного тубулина высока, его полимеризация происходит быстрее, чем деполимеризация на минус-конце, за счёт чего микротрубочка удлиняется. По мере её роста концентрация тубулина падает до критической, и скорость роста замедляется вплоть до вступления в следующую фазу.
  • Фаза стабильного состояния. Деполимеризация уравновешивает полимеризацию, и рост микротрубочки останавливается.

Лабораторные исследования показывают, что сборка микротрубочек из тубулинов происходит только в присутствии гуанозинтрифосфата и ионов магния .

Видео по теме

Динамическая нестабильность

Микротрубочки являются динамическими структурами и в клетке постоянно полимеризуются и деполимеризуются. Центросома , локализованная вблизи ядра , выступает в клетках животных и многих протистов как центр организации микротрубочек (ЦОМТ): они растут от неё к периферии клетки. В то же время микротрубочки могут внезапно прекратить свой рост и укоротиться обратно по направлению к центросоме вплоть до полного разрушения, а затем вырасти снова. При присоединении к микротрубочке молекулы тубулина, несущие ГТФ , образуют «шапочку», которая обеспечивает рост микротрубочки. Если локальная концентрация тубулина падает, связанная с бета-тубулином ГТФ постепенно гидролизуется. Если полностью гидролизуется ГТФ «шапочки» на +-конце, это приводит к быстрому распаду микротрубочки. Таким образом, сборка и разборка микротрубочек связана с затратами энергии ГТФ.

Динамическая нестабильность микротрубочек играет важную физиологическую роль. Например, при делении клетки микротрубочки растут очень быстро и способствуют правильной ориентации хромосом и образованию митотического веретена .

Функция

Микротрубочки в клетке используются в качестве «рельсов» для транспортировки частиц. По их поверхности могут перемещаться мембранные пузырьки и митохондрии. Транспортировку по микротрубочкам осуществляют белки, называемые моторными . Это высокомолекулярные соединения, состоящие из двух тяжёлых (массой около 300 кДа) и нескольких лёгких цепей. В тяжёлых цепях выделяют головной и хвостовой домены. Два головных домена связываются с микротрубочками и являются собственно двигателями, а хвостовые - связываются с органеллами и другими внутриклеточными образованиями, подлежащими транспортировке.

Выделяют два вида моторных белков:

  • цитоплазматические динеины ;

Организация и динамика

Микротрубочки чрезмерно чувствительны к биотическим и абиотическим факторам окружающей среды (холоду, освещению, засухе, засолению, влиянию гербицидов и пестицидов , затоплению, сжатию, воздействию электрического поля , давлению и силе тяжести), а также к фитогормонам , антимитотическим препаратам и ряду других биологически активных соединений . Микротрубочки являются полыми полярными цилиндрическими филаментами диаметром свыше 24 нм, которые собираются из гетеродимеров α-и β-тубулина , которые в положении «голова-к-хвосту» формируют 13 протофиламентов.

В клетках высших растений присутствуют четыре типа построений микротрубочек:

Белки, ассоциированные с микротрубочками

Все компоненты цитоскелета и другие органеллы связаны между собой рядом специфических белков, ассоциированных с микротрубочками (БАМ ). В животных клетках наиболее исследованными БАМ является tau и БАМ2 , которые стабилизируют микротрубочки и присоединяют их к другим клеточным структурам, а также транспортные белки динеин и кинезин . Функционирование различных групп растительных микротрубочек зависит от наличия изоформ БАМ из семьи БАМ 65 и регуляторных киназ и фосфатаз . В частности, высококонсервативный животный гомолог семьи БАМ65 важен для получения микротрубочками определенных конфигураций на протяжении развития растения . Ориентация и организация различных популяций и типов построений микротрубочек является ткане- и органоспецифической .

Построение корня Резуховидки Таля Arabidopsis thaliana L. типично для двудольных растений . Ближайшим к поверхности корня является эпидермальный слой, клетки которого в зрелой зоне в зависимости от способности инициировать развитие корневых волосков являются трихобластами или атрихобластами . Глубже расположены накопительный безхлоропластный кортикальный слой с многочисленными межклетниками и плазмодесмами и слой эндодермальных клеток с поясками Каспари на антиклинальных поверхностях . Центральный цилиндр корня формируют паренхимные клетки перицикла , которые способны к быстрому делению, и элементы ксилемы и флоэмы . Присутствует и функциональное разграничение корневых зон: зоны деления, элонгации, созревания, а также переходная зона на границе зон инициации и элонгации . С перициклом формируются боковые корни, а с трихобластами эпидермального слоя - корневые волоски . Кончик корня покрыт корневым чехликом со специфической морфологией клеток колумеллы.

Кортикальные микротрубочки

Ацентросомальные кортикальные микротрубочки (КМТ ) важны для морфогенеза растений, регуляции клеточного деления и элонгации . Высокодинамическая популяция мембраносвязанных коротких КМТ быстро реориентуется из интерфазного поперечного положения в продольное при элонгации клетки . Ацентросомальные кортикальные микротрубочки имеют неупорядоченное размещение плюс-концов и обнаруживают динамическую нестабильность, а свободные минус-концы КМТ медленно деполимеризируются, то есть КМТ самоорганизуются гибридным механизмом динамической нестабильности и тредмилинга . Энуклеация происходит по всей поверхности плазматической мембраны . Белок SPR1 регулирует динамику и организацию плюс-конца КМТ растений, что сказывается на анизотропном росте клетки . Ацентросомальные кортикальные микротрубочки располагаются параллельно целлюлозным микрофибриллам

Отдельную группу белков цитоскелета составляют белки микротрубочек. К ним относятся тубулин, белки, ассоциированные с микротрубочками (МАР 1, МАР 2, МАР 4, тау и др.) и белки - транслокаторы (динеин, кинезин, динамин). Микротрубочки – это белковые трубчатые структуры диаметром около 25 нм и длиной до нескольких десятков микрометров; толщина их стенок – около 6 нм. Они являются обязательным компонентом цитоплазмы эукариотических клеток. Микротрубочки образуют веретено деления (ахроматиновую фигуру) в митозе и в мейозе, аксонему (центральную структуру) подвижных ресничек и жгутиков, стенку центриолей и базальных телец. Микротрубочкам отводится важная, если не ключевая, роль в клеточном морфогенезе и в некоторых видах клеточной подвижности.

Стенки микротрубучек построены из белка тубулина, на долю которого приходится 90% по весу. Тубулин – это глобулярный белок, существующий в виде димера α- и β-субъединиц с молекулярной массой ~55 кДа. Микротрубочка имеет форму полого цилиндра, стенка которого состоит из линейных цепочек тубулиновых димеров, так называемых протофиламентов. В протофиламентах α- субъединица предыдущего димера соединена с β-субъединицей следующего. Димеры в соседних протофиламентах смещены друг относительно друга, образуя спиральные ряды. На попереченом срезе видно 13 димеров тубулина, что соответствует 13 протофиламентам в

стенке микротрубочки (рис. 9). Каждая субъединица содержит около 450 аминокислот и аминокислотные последовательности субъединиц гомологичны друг другу примерно на 40%. Тубулин – ГТФсвязывающий белок, причем β-субъединица содержит лабильно связанную молекулу ГТФ или ГДФ, способную обмениваться с ГТФ в растворе, а α-субъединица – прочно связанную молекулу ГТФ.

Рис. 9. Строение микротрубочки.

Тубулин способен к спонтанной полимеризации in vitro . Такая полимеризация возможна при физиологических температурах и благоприятных ионных условиях (отсутствие ионов Ca2+ ) и требует наличия двух факторов: высокой концентрации тубулина и присутствия ГТФ. Полимеризация сопровождается гидролизом ГТФ, и тубулин в составе микротрубочки остается связанным с ГДФ, а неорганический фосфат выходит в раствор.

Полимеризация тубулина состоит из двух фаз: нуклеации и элонгации. При нуклеации происходит формирование затравок, а при

элонгации – их удлинение с образованием микротрубочек. Следует отметить, что при полимеризации тубулина субъединицы добавляются только по концам микротрубочек.

Противоположные концы микротрубочек различаются по скоростям роста. Быстрорастущий конец принято называть плюсконцом, а медленнорастущий – минус-концом микротрубочки (см. рис. 9). В клетке (–)-концы микротрубочек, как правило, ассоциированы с центросомой, а (+)-концы направлены к периферии и нередко доходят до самого края клетки.

Микротрубочки подвержены динамической нестабильности.

При постоянном количестве полимера происходит спонтанный рост или укорочение отдельных микротрубочек вплоть до полного их исчезновения. Из-за запаздывания гидролиза ГТФ по отношению к встраиванию тубулина на конце микротрубочки, находящейся в процессе роста, формируется ГТФ-кэп, состоящий из 9-18 молекул ГТФ-тубулина. ГТФ-кэп стабилизирует конец микротрубочки и способствует ее дальнейшему росту. Если же скорость включения новых гетеродимеров оказывается меньше скорости гидролиза ГТФ или в случае механического разрыва микротрубочки, образуется конец, лишенный ГТФ-кэпа. Такой конец обладает пониженным сродством к новым молекулам тубулина; он начинает разбираться.

Полимеризацию и деполимеризацию микротрубочек индуцируют изменениями температуры, ионных условий или использованием специальных химических агентов. Среди веществ, вызывающих необратимую разборку, широко используются индольные алкалоиды (колхицин, винбластин, винкристин и др.).

БЕЛКИ, АССОЦИИРОВАННЫЕ С МИКРОТРУБОЧКАМИ

Белки, ассоциированные с микротрубочками, делятся на две группы: структурные МАР (microtubule-associated proteins) и белки-

транслокаторы.

Структурные МАР

Общим свойством структурных МАР является их перманентная ассоциация с микротрубочками. Еще одним общим свойством этой группы белков является то, что в отличие от белков-транслокаторов при взаимодействии с тубулином все они связываются с С-концевой частью молекулы размером около 4 кДа.

Различают высокомолекулярные МАР 1 и МАР 2, белки тау с молекулярной массой порядка 60-70 кДа и МАР 4 или МАР U с молекулярной массой около 200 кДа.

Так, молекула МАР 1В (представитель группы белков МАР 1) – это стехиометрический комплекс одной тяжелой и двух легких цепей, представляет собой вытянутую палочкообразную молекулу длиной 190 нм, имеющую на одном конце глобулярный домен диаметром 10 нм (по-видимому, участок связывания с микротрубочками); его молекулярная масса составляет 255.5 кДа.

МАР 2 – термостабильный белок. Он сохраняет способность взаимодействовать с микротрубочками и оставаться в их составе в нескольких циклах сборки-разборки после нагревания до 90о С.

Структурные МАР способны стимулировать инициацию и элонгацию и стабилизировать готовые микротрубочки; сшивать микротрубочки в пучки. В таком сшивании участвуют короткие α-

спиральные гидрофобные последовательности на N-конце МАР и тау, замыкающие молекулы МАР, сидящие на соседних микротрубочках, наподобие застежки «молния». Биологическая роль такого сшивания может состоять в стабилизации структур, образованных микротрубочками в клетке.

На сегодняшний день экспериментальными исследованиями установлено, что помимо регуляции динамики микротрубочек структурные МАР имеют еще две основные функции: клеточный морфогенез и участие во взаимодействии микротрубочек с другими внутриклеточными структурами.

Белки-транслокаторы

К отличительной особенности белков этой группы относится свойство преобразовывать энергию АТФ в механическое усилие, способное перемещать частицы вдоль микротрубочек или микротрубочки вдоль субстрата. Соответственно транслокаторы являются механохимическими АТФазами, и их АТФазная активность стимулируется микротрубочками. В отличие от структурных МАР, транслокаторы ассоциированы в микротрубочками только в момент АТФ-зависимого перемещения.

Белки-транслокаторы делятся на две группы: кинезиноподобные белки (опосредуют движение от (–)-конца к (+)-концу микротрубочек) и динеинопободные белки (движение от (+)-конца к (–)- концу микротрубочек) (рис. 10).

Кинезин представляет собой тетрамер двух легких (62 кДа) и двух тяжелых (120 кДа) полипептидных цепей. Молекула кинезина

имеет форму стержня диаметром 2-4 нм и длиной 80-100 нм с двумя глобулярными головками на одном конце и веерообразным расширением на другом (рис. 11).

Рис. 10. Белки-транслокаторы.

В середине стержня находится шарнирный участок. N-Концевой фрагмент тяжелой цепи размером около 50 кДа, обладающий механохимической активностью, называется моторным доменом кинезина.

Рис. 11. Строение молекулы кинезина.

С помощью электронного микроскопа в цитоплазме эукариот можно увидеть фибриллярную сеть, функции которой связаны с движением внутриклеточного содержимого, перемещением самой клетки, а также в совокупности с другими структурами поддерживается форма клетки. Одними из таких фибрилл являются микротрубочки (обычно длиной от нескольких микрометров до нескольких миллиметров), представляющие собой длинные тонкие цилиндры (диаметром около 25 нм) с полостью внутри. Их относят к органоидам клетки.

Стенки микротрубочек состоят из спирально упакованных субъединиц белка тубулина , состоящего из двух частей, то есть представляющего собой димер.

Соседние трубочки могут быть связаны между собой выступами своих стенок.

Данный клеточный органоид относится к динамическим структурам, так может нарастать и распадаться (полимеризуется и деполимеризуется). Рост происходит за счет добавления новых тубулиновых субъединиц с одного конца (плюс), а разрушение – с другого (минус-конец). То есть микротрубочки полярны.

В животных клетках (а также у многих простейших) центрами организации микротрубочек являются центриоли. Они сами состоят из девяти триплетов укороченных микротрубочек и располагаются около ядра. От центриолей трубочки радиально расходятся, то есть растут к периферии клетки. У растений центрами организации выступают другие структуры.

Из микротрубочек состоит веретено деления, которое осуществляет расхождение хроматид или хромосом при митозе или мейозе. Из них состоят базальные тельца, лежащие в основании ресничек и жгутиков. Движение веретена, ресничек и жгутиков происходит за счет скольжения трубочек.

Похожей функцией является перемещение ряда клеточных органоидов и частиц (например, секреторных пузырьков, образующихся в аппарате Гольджи, лизосом, даже митохондрий). При этом микротрубочки играют роль своеобразных рельсов. Специальные моторные белки одним своим концом крепятся к трубочкам, а другим - к органеллам. За счет их движения вдоль трубочек происходит транспорт органелл. При этом одни моторные белки двигаются только от центра к периферии (кинезины), другие (динеины) - от периферии к центру.

Микротрубочки за счет своей жесткости участвуют в формировании опорной системы клетки - цитоскелета. Определяют форму клетки.

Сборка и разборка микротрубочек, а также транспорт по ним идет с затратой энергии.

Основная статья: Субмембранный комплекс

Микро-трубочки располагаются, как правило, в самых глубоких слоях примембранного цитозоля. Поэтому периферические микротру-бочки надлежало бы рассматривать как часть динамичного, организующего микротрубочкового «скелета» клетки. Однако и сократимые, и скелетные фибриллярные структуры перифериче-ского цитозоля также связаны непосредственно с фибриллярны-ми структурами основной гиалоплазмы клетки.

В функциональ-ном отношении периферическая опорно-сократимая фибрилляр-ная система клетки находится в теснейшем взаимодействии с системой периферических микротрубочек. Это дает нам основа-ние рассматривать последние как часть субмембранной системы клетки.

Белки микротрубочек

Система микротрубочек являет-ся вторым компонентом опорно-сократимого аппарата, находящаяся, как правило, в тес-ном контакте с микрофибриллярным компонентом.

Стенки микро-трубочек образованы в попереч-нике чаще всего 13 димерными глобулами белка, каждая глобу-ла состоит из α- и β-тубулинов (рис. 6). Последние в большин-стве микротрубочек расположены в шахматном порядке. Тубулин составляет 80% белков содержа-щихся в микротрубочках.

Ос-тальные 20% приходятся на до-лю высокомолекулярных белков МАР1, МАР2 и низкомолекуляр-ного тау-фактора. МАР-белки (microtubule-associated proteins- белки, связанные с микротрубоч-ками) и тау-фактор представля-ют собой компоненты, необходи-мые для полимеризации тубулина. В их отсутствие самосборка микротрубочек путем полимери-зации тубулина крайне затруд-нена и образующиеся микротру-бочки сильно отличаются от на-тивных.

Микротрубочки — очень лабильная структура, так, микро-трубочки теплокровных животных, как правило, разрушаются на холоде.

Существуют и холодоустойчивые микротрубочки, например в нейронахцентральной нервной системы позвоноч-ных их количество варьирует от 40 до 60%. Термостабильные и термолабильные микротрубочки не различаются по свойствам входящего в их состав тубулина; по-видимому, эти отличия определяются добавочными белками.

В нативных клет-ках по сравнению с микрофибриллами основная часть микротрубочковой субмем-бранной системы располага-ется в более глубоко лежа-щих участках цитоплазмы Материал с сайта http://wiki-med.com

Функции микротрубочек

Так же как и микрофибриллы, микротрубочки под-вержены функциональной изменчивости.

Какие функции выполняют микротрубочки?

Для них ха-рактерны самосборка и саморазборка, причем раз-борка происходит до тубулиновых димеров. Соответ-ственно микротрубочки мо-гут быть представлены боль-шим или меньшим количе-ством в связи с преоблада-нием процессов либо саморазборки, либо самосборки микротрубочек из фонда гло-булярного тубулина гиало-плазмы.

Интенсивные про-цессы самосборки микротру-бочек обычно приурочены к местам крепления клеток к субстрату, т. е. к местам усиленной полимеризации фибриллярного актина из глобулярного актина гиало-плазмы.

Такая корреляция степени развития этих двух механохимических систем не случайна и отражает их глубокую функциональную взаимосвязь в целостной опорно-сократимой и транс-портной системе клетки.

На этой странице материал по темам:

  • хим состав микротрубочек

  • микротрубочки строение химически состави функции

  • особенности+микротрубочки+и+функции

  • микротрубочки стоматологические

  • характер расположение микротрубочек

В эту группу органоидов входят рибосомы, микротрубочки и микрофиламенты, клеточный центр.

Рибосома

Рибосомы (рис. 1) присутствуют в клетках как эукариот, так и прокариот, поскольку выполняют важную функцию в биосинтезе белков.

В каждой клетке имеются десятки, сотни тысяч (до нескольких миллионов) этих мелких округлых органоидов. Это округлая рибонуклеопротеиновая частица. Диаметр ее составляет 20-30 нм. Состоит рибосома из большой и малой субъединиц, которые объединяются в присутствии нити м-РНК (матричной, или информационной, РНК). Комплекс из группы рибосом, объединенных одной молекулой м-РНК наподобие нитки бус, называется полисомой . Эти структуры либо свободно расположены в цитоплазме, либо прикреплены к мембранам гранулярной ЭПС (в обоих случаях на них активно протекает синтез белка).

Рис.1. Схема строения рибосомы, сидяшей на мембране эндоплазматической сети: 1 — малая субъединииа; 2 иРНК; 3 — аминоацил-тРНК; 4 — аминокислота; 5 — большая субъединица; 6 — — мембрана эндоплазматической сети; 7 - синтезируемая полипептидная цепь

Полисомы гранулярной ЭПС образуют белки, выводимые из клетки и используемые для нужд всего организма (например, пищеварительные ферменты, белки женского грудного молока).

Кроме этого, рибосомы присутствуют на внутренней поверхности мембран митохондрий, где также принимают активное участие в синтезе белковых молекул.

Микротрубочки

Это трубчатые полые образования, лишенные мембраны. Внешний диаметр составляет 24 нм, ширина просвета - 15 нм, толщина стенки - около 5 нм. В свободном состоянии представлены в цитоплазме, также являются структурными элементами жгутиков, центриолей, веретена деления, ресничек.

Микротрубочки построены из стереотипных белковых субъединиц путем их полимеризации. В любой клетке процессы полимеризации идут параллельно процессам деполимеризации.

Причем соотношение их определяется количеством микротрубочек. Микротрубочки имеют различную устойчивость к разрушающим их факторам, например, к колхицину (это химическое вещество, вызывающее деполимеризацию). Функции микротрубочек:

1) являются опорным аппаратом клетки;

2) определяют формы и размеры клетки;

3) являются факторами направленного перемещения внутриклеточных структур.

Микрофиламенты

Это тонкие и длинные образования, которые обнаруживаются по всей цитоплазме.

Иногда образуют пучки. Виды микро-филаментов:

1) актиновые. Содержат сократительные белки (актин), обеспечивают клеточные формы движения (например, амебоидные), играют роль клеточного каркаса, участвуют в организации перемещений органелл и участков цитоплазмы внутри клетки;

2) промежуточные (толщиной 10 нм). Их пучки обнаруживаются по периферии клетки под плазмалеммой и по окружности ядра.

Выполняют опорную (каркасную) роль.

Микротрубочки

В разных клетках (эпителиальных, мышечных, нервных, фибробластах) построены из разных белков.

Микрофиламенты, как и микротрубочки, построены из субъединиц, поэтому их количество определяется соотношением процессов полимеризации и деполимеризации.

Клетки всех животных, некоторых грибов, водорослей, высших растений характеризуются наличием клеточного центра.

Клеточный центр обычно располагается рядом с ядром.

Он состоит из двух центриолей, каждая из которых представляет собой полый цилиндр диаметром около 150 нм, длиной 300-500 нм.

Центриоли расположены взаимоперпендикулярно.

Стенка каждой центриоли образована 27 микротрубочками, состоящими из белка тубулина. Микротрубочки сгруппированы в 9 триплетов.

Из центриолей клеточного центра во время деления клетки образуются нити веретена деления.

Центриоли поляризуют процесс деления клетки, чем достигается равномерное расхождение сестринских хромосом (хроматид) в анафазе митоза.

Клеточные включения.

Так называются непостоянные компоненты в клетке, присутствующие в основном веществе цитоплазмы в виде зерен, гранул или капелек. Включения могут быть окружены мембраной или же не окружаются ею.

В функциональном отношении выделяют три вида включений: запасные питательные вещества (крахмал, гликоген, жиры, белки), секреторные включения (вещества, характерные для железистых клеток, продуцируемые ими, - гормоны желез внутренней секреции и т.

п.) и включения специального назначения (в узкоспециализированных клетках, например гемоглобин в эритроцитах).

Краснодембский Е. Г.»Общая биология: Пособие для старшеклассников и поступающих в вузы»

С. Курбатова, Е. А. Козлова «Конспект лекций по общей биологии»

Основная статья: Реснички и жгутики

Характерная для ресничек инфузорий организация постоян-ных тубулин-динеиновых механохимических комплексов с двумя центральными и девятью периферическими парами микротрубо-чек имеет широкое распространение и в специализированных клетках метазойных животных (реснички и жгутики клеток ресничных эпителиев, жгутики сперматозоидов и др.). Однако такой принцип построения не является единственной конструктивной формой организации постоянных тубулин-динеиновых систем.

Микротрубочки, их строение и функции.

Проведенный в последнее время детальный сравнительно-цитологический анализ организации жгутиков сперматозоидов у разных многоклеточных животных показал возможность существенных изменений стандартной формулы 9 + 2 даже у близкородственных животных.

В жгутиках спер-матозоидов некоторых групп животных две центральные микро-трубочки могут отсутствовать, а их роль выполняют цилиндры из электронно-плотного вещества. Среди низших многоклеточ-ных (турбеллярии и близкие к ним группы) подобного рода модификации распределены у отдельных видов животных мо-заично и, вероятно, полифилетичны по своему происхождению, хотя у всех этих видов образуются сходные морфологические структуры.

Еще более значительные модификации постоянных тубулин-динеиновых систем наблюдаются в щупальцах некото-рых простейших. Здесь эта система представлена группой антипараллельных микротрубочек. Динеиновые структуры, связыва-ющие микротрубочки, имеют отличный от динеиновых «рук» рес-ничек и жгутиков характер расположения, хотя принцип рабо-ты динеин-тубулиновой системы ресничек, жгутиков и щупалец простейших, по-видимому, сходен.

Принцип работы тубулин-динеинового комплекса

В настоящее время имеется несколько гипотез, объясняю-щих принцип работы тубулин-динеиновой механохимической системы.

Одна из них предполагает, что эта система функцио-нирует по принципу скольжения. Химическая энергия АТФ пре-вращается в механохимическую энергию скольжения одних дублетов микротрубочек по отношению к другим за счет тубулин-динеинового взаимодействия в местах временных контактов динеиновых «рук» с димерами тубулина в стенках микротрубо-чек. Таким образом, в данной механохимической системе, не-смотря на ее существенные особенности по сравнению с актин- миозиновой системой, используется тот же принцип скольже-ния, базирующийся на специфическом взаимодействии основ-ных сократимых белков.

Необходимо отметить и сходные при-знаки в свойствах основных сократимых белков динеина и мио-зина, с одной стороны, и тубулина и актина — с другой. Для динеина и миозина это близкие молекулярные веса и наличие АТФазной активности. Для тубулина и актина помимо сход-ства молекулярных весов характерны близкие аминокислотный состав и первичная структура белковых молекул.

Совокупность перечисленных признаков структурно-биохимической организа-ции актин-миозиновой и тубулин-динеиновой систем позволяет предполагать, что они развились из одной механохимической системы первичных эукариотных клеток и сложились в резуль-тате прогрессивного усложнения их организации.

Взаимодействие актин-миозиновой и тубулин-динеиновой комплекса

Актин-миозиновая и тубулин-динеиновая комплексы, как пра-вило, в большинстве эукариотных клеток объединяются при функционировании в одну систему.

Так, например, в динамич-ном субмембранном аппарате культивируемых in vitro клеток присутствуют обе механохимические системы: и актин-миозино-вая, и тубулин-динеиновая. Возможно, что это связано с осо-бой ролью микротрубочек как организующих и направляющих скелетных образований клетки. С другой стороны, наличие двух аналогичных систем может повышать пластичность сократи-мых внутриклеточных структур, тем более что регуляция ра-боты актин-миозиновой системы принципиально отличается от регуляции работы динеин-тубулиновой системы.

В частности, необходимые для запуска актин-миозиновой системы ионы кальция тормозят, а в высоких концентрациях и нарушают структурную организацию тубулин-динеиновой системы. Материал с сайта http://wiki-med.com

Постоянная смешанная микротрубочковая и актин-миозиновая система обнаружена в субмембранной области таких край-не специализированных образований, как кровяные пластинки млекопитающих, представляющие собой свободно циркулирую-щие в крови участки цитоплазмы полиплоидных клеток мегакариоцитов.

Помимо хорошо развитой в периферической гиа-лоплазме актин-миозиновой фибриллярной системы здесь име-ется мощное кольцо микротрубочек, по-видимому, обеспечиваю-щих поддержание формы этих структур.

Актин-миозиновая си-стема кровяных пластинок играет важную роль в процессе свертывания крови.

Смешанные постоянные актин-миозиновая и тубулин-динеиновая системы, очевидно, широко распространены у высших простейших и, в частности, у инфузорий.

Однако в настоящее время они изучены преимущественно на уровне чисто морфо логического, ультраструктурного анализа. Функциональное взаимодействие названных двух основных механохимически: систем интенсивно исследуется у метазойных клеток в процес-сах митотического деления. Этот вопрос мы подробнее рассмот-рим ниже, при описании процессов репродукции клеток.

Материал с сайта http://Wiki-Med.com

На этой странице материал по темам.

Микротрубочки принимают участие в поддержании формы клетки и служат направляющими «рельсами» для транспорта органоидов. Вместе с ассоциированными белками (динеин, кинезин) микротрубочки способны осуществлять механическую работу, например транспорт митохондрий, движение ресничек (трихомоподобных выростов клеток в эпителии легких, кишечника и яйцеводов) и биение жгутика сперматозоида. Кроме того, микротрубочки выполняют важные функции во время деления клеток.

  • Схема строения микротрубочки

  • Реснички, жгутики, клеточный центр, центриоли

    Реснички и жгутики - органоиды специального назначения, выполняющие двигательную функцию и выступающие из клетки. Различий в ультрамикроскопическом строении ресничек и жгутиков нет. Жгутики отличаются от ресничек лишь длиной. Длина ресничек составляет 5-10 мкм, а длина жгутиков может достигать 150 мкм. Диаметр их составляет около 0,2 мкм. Одноклеточные организмы, имеющие реснички и жгутики, обладают способностью к движению. Неподвижные клетки, благодаря движению ресничек, способны перемещать жидкости и частички веществ.

  • Строение аксонемы реснички

  • Ресничка представляет собой тонкий цилиндрический вырост цитоплазмы, покрытый цитоплазматической мембраной.
    Внутри выроста расположена аксонема (осевая нить), состоящая в основном из микротрубочек. В основании реснички находится базальное тело, погруженное в цитоплазму. Диаметры аксонемы и базального тельца одинаковы (около 150 нм).
    Базальное тельце состоит из 9 триплетов микротрубочек и имеет "ручки". Часто в основании реснички лежит не одна, а пара базальных телец, располагающихся под прямым углом друг к другу, подобно центриоли.
    Аксонема в отличие от базального тельца или центриоли имеет 9 дублетов микротрубочек с "ручками", образующих стенку цилиндра аксонемы. Кроме периферических дублетов микротрубочек, в центре аксонемы располагается пара центральных микротрубочек.
    В целом систему микротрубочек реснички описывают как (9 х 2) + 2 в отличие от (9 х 3) + 0 системы центриолей и базальных телец. Базальное тельце и аксонема структурно связаны друг с другом и составляют единое целое: две микротрубочки триплетов базального тельца являются микротрубочками дублетов аксонемы.
    Для объяснения способа движения ресничек и жгутиков используется гипотеза "скользящих нитей". Считается, что незначительные смещения дублетов микротрубочек друг относительно друга могут вызвать изгиб всей реснички. Если такое локальное смещение будет происходить вдоль жгутика, то возникает волнообразное движение.

  • Строение центриоли

  • Клеточный центр, или центросома, представляет собой немембранный органоид, локализованный около ядра и состоящий из двух центриолей и центросферы. Постоянным и наиболее важным компонентом клеточного центра являются центриоли. Этот органоид обнаружен в клетках животных, низших растений и грибов.
    Центриоли (от лат. centrum - срединная точка, центр) представляют собой два перпендикулярно расположенных друг к другу цилиндра, стенки которых образованы микротрубочками и соединены системой связок. Конец одного цилиндра (дочерняя центриоль) направлен к поверхности другого (материнская центриоль). Совокупность сближенных между собой материнской и дочерней центриолей называется диплосомой. Впервые центриоли были обнаружены и описаны в 1875 г. В. Флемингом. В интерфазных клетках центриоли часто располагаются возле комплекса Гольджи и ядра.
    Стенка центриолей состоит из расположенных по окружности 9 триплетов микротрубочек, образующих полый цилиндр. Систему микротрубочек центриоли можно описать формулой (9X3) + 0, подчеркивая отсутствие микротрубочек в центральной части. Диаметр центриоли составляет около 0,2 мкм, длина - 0,3-0,5 мкм (однако, есть центриоли, достигающие в длину нескольких микрометров). Кроме микротрубочек в состав центриоли входят дополнительные структуры - "ручки", соединяющие триплеты.
    Центросфера - плотный слой цитоплазмы вокруг центриолей, в котором часто содержатся микротрубочки, расположенные лучами.

    Центриолярный цикл. Строение и активность центриолей меняются в зависимости от периода клеточного цикла. Это позволяет говорить о центриолярном цикле. В начале периода G1 от поверхности материнской центриоли начинается рост микротрубочек, которые растут и заполняют цитоплазму. По мере роста микротрубочки теряют связь с областью центриолей и могут находиться в цитоплазме длительное время.
    В периоде S или G2 происходит удвоение числа центриолей. Этот процесс заключается в том, что центриоли в диплосоме расходятся и около каждой из них происходит закладка процентриолей. В начале вблизи и перпендикулярно исходной центриоли закладываются девять одиночных микротрубочек. Затем они преобразуются в девять дуплетов, а потом в девять триплетов микротрубочек новых центриолей. Этот способ увеличения числа центриолей был назван дупликацией. Следует отметить, что удвоение числа центриолей не связано с их делением, почкованием или фрагментацией, а происходит путем образования процентриолей. Таким образом, в результате дупликации в клетке содержатся четыре попарно связанные центриоли. В этом периоде материнская центриоль продолжает играть роль центра образования цитоплазматических микротрубочек.
    В периоде G2 обе материнские центриоли покрываются фибриллярным гало (зона тонких фибрилл), от которого в профазе начнут отрастать митотические микротрубочки. В этом периоде в цитоплазме происходит исчезновение микротрубочек и клетка стремится приобрести шаровидную форму. В профазе митоза диплосомы расходятся к противоположным полюсам клетки. От фибриллярного гало материнской центриоли отходят микротрубочки, из которых формируется веретено деления митотического аппарата. Таким образом, центриоли являются центрами организации роста микротрубочек. В телофазе происходит разрушение веретена деления.
    Следует отметить, что в клетках высших растений, некоторых водорослей, грибов, ряда простейших центры организации роста микротрубочек центриолей не имеют. У некоторых простейших центрами индукции образования микротрубочек выступают плотные пластинки, связанные с мембраной.