Какое состояние считается устойчивым для тиристора. Что такое тиристор. Принцип работы и правила пользования. Чем различаются динисторы и тринисторы

8 января 2013 в 19:23

Тиристоры для чайников

  • Электроника для начинающих

Добрый вечер хабр. Поговорим о таком приборе, как тиристор. Тиристор - это полупроводниковый прибор с двумя устойчивыми состояниями, имеющий три или больше взаимодействующих выпрямляющих перехода. По функциональности их можно соотнести к электронным ключам. Но есть в тиристоре одна особенность, он не может перейти в закрытое состояние в отличие от обычного ключа. Поэтому обычно его можно найти под названием - не полностью управляемый ключ.

На рисунке представлен обычный вид тиристора. Состоит он из четырех чередующихся типов электро-проводимости областей полупроводника и имеет три вывода: анод, катод и управляющего электрод.
Анод - это контакт с внешним p-слоем, катод - с внешним n-слоем.
Освежить память о p-n переходе можно .

Классификация

В зависимости от количества выводов можно вывести классификацию тиристоров. По сути все очень просто: тиристор с двумя выводами называется динисторами (соответственно имеет только анод и катод). Тиристор с тремя и четырьмя выводами, называются триодными или тетродными. Также бывают тиристоры и с большим количеством чередующихся полупроводниковых областей. Одним из самых интересных является симметричный тиристор (симистор), который включается при любой полярности напряжения.

Принцип работы



Обычно тиристор представляют в виде двух транзисторов, связанных между собой, каждый из которых работает в активном режиме.

В связи с таким рисунком можно назвать крайние области - эмиттерными, а центральный переход - коллекторным.
Чтобы разобраться как работает тиристор стоит взглянуть на вольт-амперную характеристику.


К аноду тиристора подали небольшое положительное напряжение. Эмиттерные переходы включены в прямом направлении, а коллекторный в обратном. (по сути все напряжение будем на нем). Участок от нуля до единицы на вольт-амперной характеристике будет примерно аналогичен обратной ветви характеристики диода. Этот режим можно назвать - режимом закрытого состояния тиристора.
При увеличении анодного напряжения происходит происходит инжекция основных носителей в области баз, тем самым происходит накопление электронов и дырок, что равносильно разности потенциалов на коллекторном переходе. С увеличением тока через тиристор напряжение на коллекторном переходе начнет уменьшаться. И когда оно уменьшится до определенного значения, наш тиристор перейдет в состояние отрицательного дифференциального сопротивления (на рисунке участок 1-2).
После этого все три перехода сместятся в прямом направлении тем самым переведя тиристор в открытое состояние (на рисунке участок 2-3).
В открытом состоянии тиристор будет находится до тех пор, пока коллекторный переход будет смещен в прямом направлении. Если же ток тиристора уменьшить, то в результате рекомбинации уменьшится количество неравновесных носителей в базовых областях и коллекторный переход окажется смещен в обратном направлении и тиристор перейдет в закрытое состояние.
При обратном включении тиристора вольт-амперная характеристика будет аналогичной как и у двух последовательно включенных диодов. Обратное напряжение будет ограничиваться в этом случае напряжением пробоя.

Общие параметры тиристоров

1. Напряжение включения - это минимальное анодное напряжение, при котором тиристор переходит во включенное состояние.
2. Прямое напряжение - это прямое падение напряжения при максимальном токе анода.
3. Обратное напряжение - это максимально допустимое напряжение на тиристоре в закрытом состоянии.
4. Максимально допустимый прямой ток - это максимальный ток в открытом состоянии.
5. Обратный ток - ток при максимальной обратном напряжении.
6. Максимальный ток управления электрода
7. Время задержки включения/выключения
8. Максимально допустимая рассеиваемая мощность

Заключение

Таким образом, в тиристоре существует положительная обратная связь по току - увеличение тока через один эмиттерный переход приводит к увеличению тока через другой эмиттерный переход.
Тиристор - не полностью управляющий ключ. То есть перейдя в открытое состояние, он остается в нем даже если прекращать подавать сигнал на управляющий переход, если подается ток выше некоторой величины, то есть ток удержания.

Тиристоры - это силовые электронные ключи, управляемые не полностью. Нередко в технических книгах можно увидеть еще одно название этого прибора - однооперационный тиристор. Другими словами, под воздействием управляющего сигнала он переводится в одно состояние - проводящее. Если конкретизировать, то он включает цепь. Чтобы она выключалась, необходимо создать специальные условия, которые обеспечивают падение прямого тока в цепи до нулевого значения.

Особенности тиристоров

Тиристорные ключи проводят электрический ток только в прямом направлении, причем в закрытом состоянии он выдерживает не только прямое, но и обратное напряжение. Структура тиристора четырехслойная, имеется три вывода:

  1. Анод (обозначается буквой А).
  2. Катод (буквой С или К).
  3. Управляющий электрод (У или G).

У тиристоров есть целое семейство вольт-амперных характеристик, по ним можно судить о состоянии элемента. Тиристоры - это очень мощные электронные ключи, они способны проводить коммутацию цепей, в которых напряжение может достигать 5000 вольт, а сила тока - 5000 ампер (при этом частота не превышает 1000 Гц).

Работа тиристора в цепях постоянного тока

Обычный тиристор включается путем подачи токового импульса на управляющий вывод. Причем он должен быть положительным (по отношению к катоду). Длительность переходного процесса зависит от характера нагрузки (индуктивная, активная), амплитуды и скорости нарастания в цепи управления импульса тока, температуры кристалла полупроводника, а также приложенного тока и напряжения на имеющиеся в схеме тиристоры. Характеристики схемы напрямую зависят от вида используемого полупроводникового элемента.

В той цепи, в которой находится тиристор, недопустимо возникновение большой скорости нарастания напряжения. А именно такого значения, при котором происходит самопроизвольное включение элемента (даже если нет сигнала в цепи управления). Но одновременно с этим у сигнала управления должна быть очень высокая крутизна характеристики.

Способы выключения

Можно выделить два типа коммутации тиристоров:

  1. Естественная.
  2. Принудительная.

А теперь более подробно о каждом виде. Естественная возникает тогда, когда тиристор работает в цепи переменного тока. Причем происходит эта коммутация тогда, когда ток падает до нулевого значения. А вот осуществить принудительную коммутацию можно большим количеством различных способов. Какое управление тиристором выбрать, решать разработчику схемы, но стоит поговорить о каждом типе отдельно.

Самым характерным способом принудительной коммутации является подключение конденсатора, который был заранее заряжен при помощи кнопки (ключа). LC-цепь включается в схему управления тиристором. Эта цепочка и содержит заряженный полностью конденсатор. При переходном процессе в нагрузочной цепи происходят колебания тока.

Способы принудительной коммутации

Существует еще несколько типов принудительной коммутации. Нередко применяют схему, в которой используется коммутирующий конденсатор, имеющий обратную полярность. Например, этот конденсатор может включаться в цепь при помощи какого-либо вспомогательного тиристора. При этом произойдет разряд на основной (рабочий) тиристор. Это приведет к тому, что у конденсатора ток, направленный навстречу прямому току основного тиристора, будет способствовать снижению тока в цепи вплоть до нуля. Следовательно, произойдет выключение тиристора. Это случается по той причине, что устройство тиристора имеет свои особенности, характерные только для него.

Существуют также схемы, в которых подключаются LC-цепочки. Они разряжаются (причем с колебаниями). В самом начале ток разряда течет навстречу рабочему, а после уравнивания их значений происходит выключение тиристора. После из колебательной цепочки ток перетекает через тиристор в полупроводниковый диод. При этом, покуда течет ток, к тиристору прикладывается некоторое напряжение. Оно по модулю равно падению напряжения на диоде.

Работа тиристора в цепях переменного тока

Если тиристор включить в цепь переменного тока, можно осуществить такие операции:

  1. Включить или отключить электрическую цепь с активно-резистивной или активной нагрузкой.
  2. Изменить среднее и действующее значение тока, который проходит через нагрузку, благодаря возможности регулировать момент подачи сигнала управления.

У тиристорных ключей имеется одна особенность - они проводят ток только в одном направлении. Следовательно, если необходимо использовать их в цепях приходится применять встречно-параллельное включение. Действующие и средние значения тока могут изменяться из-за того, что момент подачи сигнала на тиристоры различный. При этом мощность тиристора должна соответствовать минимальным требованиям.

Фазовый метод управления

При фазовом методе управления с коммутацией принудительного типа происходит регулировка нагрузки благодаря изменению углов между фазами. Искусственную коммутацию можно осуществить при помощи специальных цепей, либо же необходимо использовать полностью управляемые (запираемые) тиристоры. На их основе, как правило, изготавливают которое позволяет регулировать в зависимости от уровня зарядки аккумуляторной батареи.

Широтно-импульсное управление

Называют еще его ШИМ-модуляцией. Во время открытия тиристоров подается сигнал управления. Переходы открыты, а на нагрузке имеется некоторое напряжение. Во время закрытия (в течение всего переходного процесса) не подается сигнал управления, следовательно, тиристоры не проводят ток. При осуществлении фазового управления токовая кривая не синусоидальна, происходит изменение формы сигнала напряжения питания. Следовательно, происходит также нарушение работы потребителей, которые чувствительны к высокочастотным помехам (появляется несовместимость). Несложную конструкцию имеет регулятор на тиристоре, который без проблем позволит изменить необходимую величину. И не нужно применять массивные ЛАТРы.

Тиристоры запираемые

Тиристоры - это очень мощные электронные ключи, используются для коммутации высоких напряжений и токов. Но есть у них один огромный недостаток - управление неполное. А если конкретнее, то это проявляется тем, что для отключения тиристора нужно создавать условия, при котором прямой ток будет снижаться до нуля.

Именно эта особенность накладывает некоторые ограничения на использование тиристоров, а также усложняет схемы на их основе. Чтобы избавиться от такого рода недостатков, были разработаны специальные конструкции тиристоров, которые запираются сигналом по одному электроду управления. Их называют двухоперационными, или запираемыми, тиристорами.

Конструкция запираемого тиристора

Четырехслойная структура р-п-р-п у тиристоров имеет свои особенности. Они придают им отличия от обычных тиристоров. Речь сейчас идет о полной управляемости элемента. Вольт-амперная характеристика (статическая) при прямом направлении такая же, как и у простых тиристоров. Вот только прямой ток тиристор может пропускать куда больший по значению. Но функции блокировки больших обратных напряжений у запираемых тиристоров не предусмотрено. Поэтому необходимо соединять его встречно-параллельно с

Характерная особенность запираемого тиристора - это значительное падение прямых напряжений. Чтобы произвести отключение, следует осуществить подачу на управляющий вывод мощного импульса тока (отрицательного, в соотношении 1:5 к прямому значению тока). Но только длительность импульса должна быть как можно меньшей - 10... 100 мкс. Запираемые тиристоры обладают более низким значением предельного напряжения и тока, нежели обычные. Разница составляет примерно 25-30 %.

Виды тиристоров

Выше были рассмотрены запираемые, но существует еще немало типов полупроводниковых тиристоров, о которых также стоит упомянуть. В самых различных конструкциях (зарядные устройства, переключатели, регуляторы мощности) используются определенные типы тиристоров. Где-то требуется, чтобы управление проводилось путем подачи потока света, значит, используется оптотиристор. Его особенность заключается в том, что в цепи управления используется кристалл полупроводника, чувствительный к свету. Параметры тиристоров различны, у всех свои особенности, характерные только для них. Поэтому нужно хотя бы в общих чертах представлять, какие виды этих полупроводников существуют и где они могут применяться. Итак, вот весь список и основные особенности каждого типа:

  1. Диод-тиристор. Эквивалент этого элемента - тиристор, к которому подключен встречно-параллельно полупроводниковый диод.
  2. Динистор (диодный тиристор). Он может переходить в состояние полной проводимости, если превышается определенный уровень напряжения.
  3. Симистор (симметричный тиристор). Его эквивалент - два тиристора, включенных встречно-параллельно.
  4. Тиристор инверторный быстродействующий отличается высокой скоростью коммутации (5... 50 мкс).
  5. Тиристоры с управлением Часто можно встретить конструкции на основе МОП-транзисторов.
  6. Оптические тиристоры, которые управляются потоками света.

Осуществление защиты элемента

Тиристоры - это приборы, которые критичны к скоростям нарастания прямого тока и прямого напряжения. Для них, как и для полупроводниковых диодов, характерно такое явление, как протекание обратных токов восстановления, которое очень быстро и резко падает до нулевого значения, усугубляя этим вероятность возникновения перенапряжения. Это перенапряжение является следствием того, что резко прекращается ток во всех элементах схемы, которые имеют индуктивность (даже сверхмалые индуктивности, характерные для монтажа - провода, дорожки платы). Для осуществления защиты необходимо использовать разнообразные схемы, позволяющие в динамических режимах работы защититься от высоких напряжений и токов.

Как правило, источника напряжения, который входит в цепь работающего тиристора, имеет такое значение, что его более чем достаточно для того, чтобы в дальнейшем не включать в схему некоторую дополнительную индуктивность. По этой причине в практике чаще используется цепочка формирования траектории переключения, которая значительно снижает скорость и уровень перенапряжения в схеме при отключении тиристора. Емкостно-резистивные цепочки наиболее часто используются для этих целей. Они включаются с тиристором параллельно. Имеется довольно много видов схемотехнических модификаций таких цепей, а также методик их расчетов, параметров для работы тиристоров в различных режимах и условиях. А вот цепь формирования траектории переключения запираемого тиристора будет такая же, как и у транзисторов.

— устройство, обладающее свойствами полупроводника, в основе конструкции которого лежит монокристаллический полупроводник, имеющий три или больше p-n-переходов.

Его работа подразумевает наличие двух стабильных фаз:

  • «закрытая» (уровень проводимости низкий);
  • «открытая» (уровень проводимости высоки).

Тиристоры — устройства, выполняющие функции силовых электронных ключей. Другое их наименование — однооперационные тиристоры. Данный прибор позволяет осуществлять регуляцию воздействия мощных нагрузок посредством незначительных импульсов.

Согласно вольт-амперной характеристике тиристора, увеличение силы тока в нём будет провоцировать снижение напряжения, то есть появится отрицательное дифференциальное сопротивление.

Кроме того, эти полупроводниковые устройства могут объединять цепи с напряжением до 5000 Вольт и силой тока до 5000 Ампер (при частоте не более 1000 Гц).

Тиристоры с двумя и тремя выводами пригодны для работы как с постоянным, так и с переменным током. Наиболее часто принцип их действия сравнивается с работой ректификационного диода и считается, что они являются полноценным аналогом выпрямителя, в некотором смысле даже более эффективным.

Разновидности тиристоров отличаются между собой:

  • Способом управления.
  • Проводимостью (односторонняя или двусторонняя).

Общие принципы управление

В структуре тиристора имеется 4 полупроводниковых слоя в последовательном соединении (p-n-p-n). Контакт, подведённый к наружному p-слою — анод, к наружному n-слою — катод. Как результат, при стандартной сборке в тиристоре максимально может быть два управляющих электрода, которые крепятся к внутренним слоям. Соответственно подключённому слою проводники, по типу управления устройства делятся на катодные и анодные. Чаще используется первая разновидность.

Ток в тиристорах течёт в сторону катода (от анода), поэтому соединение с источником тока осуществляет между анодом и плюсовым зажимом, а также между катодом и минусовым зажимом.

Тиристоры с управляющим электродом могут быть:

  • Запираемыми;
  • Незапираемыми.

Показательным свойством незапираемых приборов является отсутствие у них реакции на сигнал с управляющего электрода. Единственный способ закрыть их — снизить уровень протекающего сквозь них тока так, чтобы он уступал силе тока удержания.

Управляя тиристором следует учитывать некоторые моменты. Устройство данного типа сменяет фазы работы с «выключен» на «включён» и обратно скачкообразно и только при условии внешнего воздействия: при помощи тока (манипуляции с напряжением) или фотонов (в случаях с фототиристором).

Чтобы разобраться в данном моменте необходимо помнить, что у тиристора преимущественно имеется 3 вывода (тринистор): анод, катод и управляющий электрод.

Уэ (управляющий электрод) как раз таки и отвечает за то, чтобы включать и выключать тиристор. Открытие тиристора происходит при условии, что приложенное напряжение между А (анодом) и К (катодом) становится равным или превосходит объём напряжения работы тринистора. Правда, во втором случае потребуется воздействие импульса положительной полярности между Уэ и К.

При постоянной подаче питающего напряжения тиристор может быть открыт бесконечно долго.

Чтобы перевести его в закрытое состояние, можно:

  • Снизить уровень напряжения между А и К до нуля;
  • Понизить значение А-тока таким образом, чтобы показатели силы тока удержания оказались больше;
  • Если работа цепи построена на действии переменного тока, выключение прибора произойдёт без постороннего вмешательства, когда уровень тока сам снизится до нулевого показания;
  • Подать запирающее напряжение на Уэ (актуально только в отношении запираемых разновидностей полупроводниковых устройств).

Состояние закрытости тоже длится бесконечно долго, пока не возникнет запускающий импульс.

Конкретные способы управления

  • Амплитудный .

Представляет собой подачу положительного напряжения изменяющейся величины на Уэ. Открытие тиристора происходит, когда величины напряжения довольно, чтобы пробиться через управляющий переход тока спрямления (Iспр.). При помощи изменения величины напряжения на Уэ, появляется возможность изменения времени открытия тиристора.

Главный недочёт этого метода — сильное влияние температурного фактора. Кроме того, для каждой разновидности тиристора потребуется резистор другого вида. Этот момент не добавляет удобства в эксплуатации. Помимо этого время открытия тиристора возможно корректировать лишь пока длится первая 1/2 положительного полупериода сети.

  • Фазовый.

Заключается в смене фазы Uупр (в соотношении с напряжением на аноде). При этом применяется фазовращательный мост. Главный минус — малая крутизна Uупр, поэтому стабилизировать момент открытия тиристора можно лишь ненадолго.

  • Фазово-импульсный .

Рассчитан на преодоление недостатков фазового метода. С этой целью на Уэ подаётся импульс напряжения с крутым фронтом. Данный подход в настоящее время наиболее распространён.

Тиристоры и безопасность

Из-за импульсности своего действия и наличия обратного восстановительного тока тиристоры очень сильно повышает риск перенапряжения в работе прибора. Помимо этого опасность перенапряжения в зоне полупроводника высока, если в других частях цепи напряжения нет вовсе.

Поэтому во избежание негативных последствий принято использовать схемы ЦФТП. Они препятствуют появлению и удержанию критический значений напряжения.

Двухтранзисторная модель тиристора

Из двух транзисторов вполне можно собрать динистор (тиристор с двумя выводами) или тринистор (тиристор с тремя выводами). Для этого один из них должен иметь p-n-p-проводимость, другой — n-p-n-проводимость. Выполнены транзисторы могут быть как из кремния, так и из германия.

Соединение между ними осуществляется по двум каналам:

  • Анод от 2-го транзистора + Управляющий электрод от 1-го транзистора;
  • Катод от 1-го транзистора + Управляющий электрод от 2-го транзистора.

Если обойтись без использования управляющих электродов, то на выходе получится динистор.

Совместимость выбранных транзисторов определяется по одинаковому объёму мощности. При этом показания тока и напряжения должны быть обязательно больше требуемых для нормального функционирования прибора. Данные по напряжению пробоя и току удержания зависят от конкретных качеств использованных транзисторов.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

Тиристоры

I. Назначение

Тиристорами называются полупроводниковые приборы с тремя (и более) р-п -переходами, предназначенными для использования в качестве электронных ключей в схемах переключения электрических токов. Они переключают электрические цепи, регулируют напряжение, преобразуют постоянный ток в переменный. По устройству и принципу работы он очень похож на полупроводниковый диод, но в отличие от него тиристор управляемый.

"Ключевой" характер действия тринистора позволяет использовать его для переключения электрических цепей там, где для этой цели до этого служили только электромагнитные реле. Полупроводниковые переключатели легче, компактнее и во много раз надежнее в работе, чем электромагнитные реле с механически замыкаемыми контактами. В отличие от таких реле они производят переключение с очень большой скоростью - сотни и тысячи раз в секунду, а если нужно - еще быстрее. Тринисторы используют в современной аппаратуре электрической связи, в быстродействующих системах дистанционного управления, в вычислительных машинах и в энергетических устройствах.

II. Классификация

В зависимости от конструктивных особенностей и свойств тиристоры делят на диодные и триодные. В диодных тиристорах различают:

    тиристоры, запираемые в обратном направлении;

    проводящие в обратном направлении;

    симметричные.

Триодные тиристоры подразделяют:

    на запираемые в обратном направлении с управлением по аноду или катоду;

    проводящие в обратном направлении с управлением по аноду или катоду;

    симметричные (двунаправленные).

Наиболее распространены динисторы - тиристоры с двумя выводами и тринисторы - приборы с тремя выводами. Кроме того, различают группу включаемых тиристоров.

Простейшие диодные тиристоры, запираемые в обратном направлении, обычно изготовляются из кремния и содержат четыре чередующихся р- и п- области (рис.2.2). Область р 1 , в которую попадает ток из внешней цепи, называют анодом , область п 2 – катодом ; области п 1 , р 2 – базами .

Рис.2.2. Структура тиристора .

III. Принцип действия

Если к аноду р 1 подключить плюс источника напряжения, а к катоду п 2 – минус, то переходы П 1 и П 3 окажутся открытыми, а переход П 2 – закрытым. Его называют коллекторным переходом.

Так как коллекторный р-п -переход смещен в обратном направлении, то до определенного значения напряжения почти все приложенное падает на нем. Такая структура легко может быть представлена в виде двух транзисторов разной электропроводности, соединенных между собой так, как показано на рис. 2.3, а,б.

а) б)

Рис. 2.3. Структура (а) и схема двухтранзисторного эквивалента тиристора (б).

Ток цепи определяется током коллекторного перехода П 2 . Он однозначно зависит от потока дырок
из эмиттера транзистора р-п -р - типа и потока электронов
из эмиттера транзистора п -р -п - типа, а также от обратного тока р-п -перехода.

Так как переходы П 1 и П 3 смещены в прямом направлении, из них в области баз инжектируются носители заряда: дырки из области р 1 , электроны – из области п 2 . Эти носители заряда, диффундируя в областях баз п 1 , р 2 , приближаются к коллекторному переходу и его полем перебрасываются через р-п -переход. Дырки, инжектированные из р 1 -области, и электроны из п 2 движутся через переход П 2 в противоположных направлениях, создавая общий ток I .

При малых значениях внешнего напряжения все оно практически падает на коллекторном переходе П 2 . Поэтому к переходам П 1 3 , имеющим малое сопротивление, приложена малая разность потенциалов и инжекция носителей заряда невелика. В этом случае ток I мал и равен обратному току через переход П . При увеличении внешнего напряжения ток в цепи сначала меняется незначительно. При дальнейшем возрастании напряжения, по мере увеличения ширины перехода П 2 , все большую роль начинают играть носители заряда, образовавшиеся вследствие ударной ионизации. При определенном напряжении носители заряда ускоряются настолько, что при столкновении с атомами в области р-п -перехода ионизируют их, вызывая лавинное размножение носителей заряда.

Образовавшиеся при этом дырки под влиянием электрического поля переходят в область р 2 , а электроны – в область п 1 . Ток через переход П 2 увеличивается, а его сопротивление и падение напряжения на нем уменьшаются. Это приводит к повышению напряжения, приложенного к переходам П 1 , П 3 , и увеличению инжекции через них, что вызывает дальнейший рост коллекторного тока и увеличение токов инжекции. Процесс протекает лавинообразно и сопротивление перехода П 2 становится малым.

Носители заряда, появившиеся в областях вследствие инжекции и лавинного размножения, приводят к уменьшению сопротивления всех областей тиристора, и падение напряжения на приборе становится незначительным. На ВАХ этому процессу соответствует участок 2 с отрицательным дифференциальным сопротивлением (рис.2.4). После переключения ВАХ аналогична ветви характеристики диода, смещенного в прямом направлении (участок 3). Участок 1 соответствует закрытому состоянию тиристора.

Выключение тиристора осуществляется за счет уменьшения напряжения внешнего источника до значения, при котором ток
меньше (участок 3).

Рис. 2.4. Вольтамперная характеристика динистора

Если параллельно с тиристором включить диод, который открывается при обратном напряжении, то получится тиристор, проводящий в обратном направлении.

Триодные тиристоры (рис. 2.5,а ) отличаются от диодных тем, что одна из баз имеет внешний вывод, который называют управляющим электродом .

Рис. 2.5. Триодный тиристор:

Изменяя ток можно менять напряжение, при котором происходит переключение тиристора, и тем самым управлять моментом его включения.

Для того, чтобы запереть тиристор, нужно либо уменьшить рабочий ток до значения
путем понижения питающего напряжения до значения , либо задать в цепи управляющего электрода импульс тока противоположной полярности.

Процесс включения и выключения тиристора поясняет рис.2.5,в . Если к нему через резистор R приложено напряжение U 1 и ток в цепи управляющего электрода равен нулю, то тиристор заперт. Рабочая точка находится в положении а . Пи увеличении тока управляющего электрода рабочая точка перемещается по линии нагрузки 1. Когда ток управляющего электрода достигнет значения I y 1 , тиристор включится, и рабочая точка его переместится в точку b . Для выключения (I y = 0) необходимо уменьшить напряжение питания до значения
. При этом рабочая точка из b 1 перейдет в а 2 и при восстановлении напряжения – в точку а .

Выключить тиристор можно также путем подачи на управляющий электрод напряжения противоположной полярности и создания в его цепи противоположно направленного тока.

Недостатком такого включения является большое значение обратного тока управляющего электрода, которое приближается к значению коммутируемого тока тиристора. Отношение амплитуды тока тиристора к амплитуде импульса выключающего тока управляющего электрода называется коэффициентом запирания :
. Он характеризует эффективность включения тиристора с помощью управляющего электрода. В ряде разработок

Тиристоры с повышенным коэффициентом запирания часто называют выключаемыми или запираемыми .

IV. Основные параметры тиристоров


Обозначения тиристоров в соответствии с ГОСТ 10862 – 72 состоят из шести элементов. Первый элемент – буква К, указывающая исходный материал полупроводника; второй – буква Н для диодных тиристоров и У для триодных; третий – цифра, определяющая назначение прибора; четвертый и пятый – порядковый номер разработки; шестой – буква, определяющая технологию изготовления, например КУ201А, КН102И и т.д.

Абсолютно любой тиристор может быть в двух устойчивых состояниях - закрыт или открыт

В закрытом состоянии он находится в состоянии низкой проводимости и ток почти не идет, в открытом, наоборот полупроводник будет находится в состоянии высокой проводимости, ток проходит через него фактически без сопротивления

Можно сказать, что тиристор это электрический силовой управляемый ключ. Но по сути управляющий сигнал может только открыть полупроводник. Чтобы запереть его обратно, требуется выполнить условия, направленные на снижение прямого тока почти до нуля.

Структурно тиристор представляет последовательность четырех, слоев p и n типа, образующих структуру р-n-р-n и соединенных последовательно.

Одна из крайних областей, на которую подключают положительный полюс питания называют анод , р – типа
Другая, к которой подсоединяют отрицательное полюс напряжения, называют катод , – n типа
Управляющий электрод подключен к внутренним слоям.

Для того чтоб разобраться с работой тиристора рассмотрим несколько случаев, первый: напряжение на управляющий электрод не подается , тиристор подсоединен по схеме динистора – положительное напряжение поступает на анод, а отрицательное на катод, смотри рисунок.

В этом случае коллекторный p-n-переход тиристора находится в закрытом состоянии, а эмиттерный – открыт. Открытые переходы имеют очень низкое сопротивление, поэтому почти все напряжение, следующее от источника питания, приложено к коллекторному переходу, из-за высокого сопротивления которого протекающий через полупроводниковый прибор ток имеет очень низкое значение.

На графике ВАХ это состояние актуально для участка отмеченного цифрой 1 .

При увеличении уровня напряжения, до определенного момента ток тиристора почти не растет. Но достигая условного критического уровня - напряжение включения U вкл , в динисторе появляются факторы, при которых в коллекторном переходе начинается резкий рост свободных носителей заряда, которое почти сразу же носит лавинный характер . В результате происходит обратимый электрический пробой (на представленном рисунке – точка 2). В p -области коллекторного перехода появляется избыточная зона накопленных положительных зарядов, в n -области, наоборот происходит накопление электронов. Рост концентрации свободных носителей заряда приводит к падению потенциального барьера на всех трех переходах , через эмиттерные переходы начинается инжекция носителей заряда. Лавинообразный характер еще сильнее увеличивается, и приводит к переключению коллекторного перехода в открытое состоянии. Одновременно увеличивается ток по всем областям полупроводника, в результате происходит падением напряжения между катодом и анодом, показанный на графике выше отрезком отмеченным цифрой три. В этот момент времени динистор обладает отрицательным дифференциальным сопротивлением. На сопротивлении R n растет напряжение и полупроводник переключается.

После открытия коллекторного перехода ВАХ динистора становится такой же, как на прямой ветви - отрезок №4. После переключения полупроводникового прибора, напряжение снижается до уровня одного вольта. В дальнейшем увеличение уровня напряжения или снижение сопротивления приведет к увеличению выходного тока, один в один, как и работе диода при его прямом включении. Если же уровень напряжение питания снизить, то высокое сопротивление коллекторного перехода, практически мгновенно восстанавливается, динистор закрывается, ток резко падает .

Напряжение включения U вкл , можно настраивать, внося в любой из промежуточных слоев, рядом с к коллекторным переходом, неосновные, для него носители заряда.

С этой целью используется специальный управляющий электрод , запитываемый от дополнительного источника, с которого следует управляющее напряжение – U упр . Как хорошо видно из графика – при росте U упр напряжение включения снижается.

Основные характеристики тиристоров

U вкл напряжение включения – при нем осуществляется переход тиристора в открытое состояние
U o6p.max – импульсное повторяющееся обратное напряжение при нем происходит электрический пробой p-n перехода. Для многих тиристоров будет верно выражение U o6p.max . = U вкл
I max - максимально допустимое значение тока
I ср - среднее значение тока за период U np - прямое падение напряжения при открытом тиристоре
I o6p.max - обратный максимальный ток начинающий течь при приложении U o6p.max , за счет перемещения неосновных носителей заряда
I удерж ток удержания – значение анодного тока, при котором осуществляется запирание тиристора
P max - максимальная рассеиваемая мощность
t откл - время отключения необходимое для запирания тиристора

Запираемые тиристоры - имеет классическую четырехслойную p-n-p-n структуру, но при этом обладает рядом конструктивных особенностей, дающих такую функциональную возможность, как полная управляемость. Благодаря такому воздействию от управляющего электрода, запираемые тиристоры могут переходить не только в открытое состояние из закрытого, но и из открытого в закрытое. Для этого на управляющий электрод поступает напряжение, противоположное тому, которое ранее открывает тиристор. Для запирания тиристора на управляющей электрод следует мощный, но короткий по длительности импульс отрицательного тока. При применении запираемых тиристоров следует помнить, что их предельные значения на 30% ниже, чем у обычных. В схемотехнике, запираемые тиристоры активно применяются в роли электронных ключей в преобразовательной и импульсной технике.

В отличие от своих четырехслойных родственников - тиристоров, они имеют пятислойную структуру.


Благодаря такой структуре полупроводника они имеют возможность пропускать ток в обоих направлениях – как от катода к аноду, так и от анода к катоду, а на управляющий электрод поступает напряжение обоих полярностей. Благодаря этому свойству вольт-амперная характеристика симистора имеет симметричный вид в обоих осях координат. Узнать о работе симистора вы можете из видеоурока, по ссылке ниже.


Принцип работы симистора

Если у стандартного тиристора имеются анод и катод то электроды симистора так описать нельзя т.к каждый уго электрод является и анодом и катодом одновременно. Поэтому симистор способен пропускать ток в обоих направлениях. Именно поэтому он отлично работает в цепях переменного тока.

Очень простой схемой, поясняющей принцип симистора является регулятор симисторный регулятор мощности.


После подачи напряжения на один из выводов симистора поступает переменное напряжение. На электрод, являющийся управляющим с диодного моста поступает отрицательное управляющее напряжение. При превышении порога включения симистор отпирается и ток поступает в подключенную нагрузку. В момент времени, когда на входе симистора меняется полярность напряжения он запирается. Затем алгоритм повторяется.

Чем выше уровень управляющего напряжения тем быстрее срабатывает симистор и длительность импульса на нагрузке увеличивается. При снижении уровня управляющего напряжения длительность импульсов на нагрузке также снижается. На выходе симисторного регулятора напряжение будет пилообразной формы с регулируемой длительностью импульса. Таким образом, регулируя управляющее напряжение мы можем изменять яркость лампочки накаливания или температуру жала паяльника подключенных в качестве нагрузки.

Итак симистор управляется как отрицательным так и положительным напряжением. Давайте выделим его минусы и плюсы.

Плюсы: низкая стоимость, большой срок службы, отсутствие контактов и, как следствие, отсутствие искрения и дребезга.
Минусы: достаточно чувствителен к перегреву и его обычно монтируют на радиаторе. Не работает на высоких частотах, так как не успевает переходить из открытого состояния в закрытое. Реагирует на внешниепомехи, вызывающие ложное срабатывание.

Следует также упомянуть о особенностях монтажа симисторов в современной электронной техники.

При малых нагрузках или если в ней протекают короткие импульсные токи, монтаж симисторов можно осуществлять без теплоотводящего радиатора. Во всех остальных случаях – его наличие строго обязательно.
К теплоотводу тиристор может фиксироваться крепежным зажимом или винтом
Для снижения вероятности ложного срабатывания из-за шумов, длина проводов должна быть минимальна. Для подсоединения рекомендуется использовать экранированный кабель или витую пару.

Или оптотиристоры специализированные полупроводники, конструктивной особенностью которого является наличие фотоэлемента, который является управляющим электродом.

Современной и перспективной разновидностью симистора являетсяо оптосимистор. Вместо управляющего электрода в корпусе имеется светодиод и управление происходит с помощью изменения напряжения питания на светодиоде. При попадании светового потока задонной мощности фотоэлемент переключает тиристор в открытое положение. Самой основной функцией в оптосимисторе является то, что между цепью управления и силовой имеется полная гальваническая развязка. Это создает просто отличный уровень и надежности конструкции.

Силовые ключи . Одним из главных моментов, влияющих на востребованность таких схем, служит низкая мощность, которую способен рассеять тиристор в схемах переключения. В запертом состоянии мощность практически не расходуется, т.к ток близок к нулевым значениям. А в открытом состоянии рассеиваемая мощность невелика благодаря низким значениям напряжения

Пороговые устройства – в них реализуется главное свойство тиристоров – открываться при достижении напряжением нужного уровня. Это используется в фазовых регуляторах мощности и релаксационных генераторах

Для прерывания и включения-выключения используются запирающие тиристоры. Правда, в данном случае схемам необходима определенная доработка.

Экспериментальные устройства – в них применяется свойство тиристора обладать отрицательным сопротивление, находясь в переходном режиме

Принцип работы и свойства динистора, схемы на динисторах

Динистор это разновидность полупроводниковых диодов относящихся к классу тиристоров. Динистор состоит из четырех областей различной проводимости и имеет три p-n перехода. В электроники он нашел довольно ограниченное применение, ходя его можно найти в конструкциях энергосберегающих ламп под цоколь E14 и E27, где он применяется в схемах запуска. Кроме того он попадается в пускорегулирующих аппаратах ламп дневного света.